Search Results

Now showing 1 - 7 of 7
Loading...
Thumbnail Image
Item

Thiophene-Based Conjugated Acetylenic Polymers with Dual Active Sites for Efficient Co-Catalyst-Free Photoelectrochemical Water Reduction in Alkaline Medium

2021, Borrelli, Mino, Querebillo, Christine Joy, Pastoetter, Dominik L., Wang, Tao, Milani, Alberto, Casari, Carlo, Khoa Ly, Hoang, He, Fan, Hou, Yang, Neumann, Christof, Turchanin, Andrey, Sun, Hanjun, Weidinger, Inez M., Feng, Xinliang

Although being attractive materials for photoelectrochemical hydrogen evolution reaction (PEC HER) under neutral or acidic conditions, conjugated polymers still show poor PEC HER performance in alkaline medium due to the lack of water dissociation sites. Herein, we demonstrate that tailoring the polymer skeleton from poly(diethynylthieno[3,2-b]thiophene) (pDET) to poly(2,6-diethynylbenzo[1,2-b:4,5-b′]dithiophene (pBDT) and poly(diethynyldithieno[3,2-b:2′,3′-d]thiophene) (pDTT) in conjugated acetylenic polymers (CAPs) introduces highly efficient active sites for water dissociation. As a result, pDTT and pBDT, grown on Cu substrate, demonstrate benchmark photocurrent densities of 170 μA cm−2 and 120 μA cm−2 (at 0.3 V vs. RHE; pH 13), which are 4.2 and 3 times higher than that of pDET, respectively. Moreover, by combining DFT calculations and electrochemical operando resonance Raman spectroscopy, we propose that the electron-enriched Cβ of the outer thiophene rings of pDTT are the water dissociation active sites, while the −C≡C− bonds function as the active sites for hydrogen evolution. © 2021 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH

Loading...
Thumbnail Image
Item

Ultrathin positively charged electrode skin for durable anion-intercalation battery chemistries

2023, Sabaghi, Davood, Wang, Zhiyong, Bhauriyal, Preeti, Lu, Qiongqiong, Morag, Ahiud, Mikhailovia, Daria, Hashemi, Payam, Li, Dongqi, Neumann, Christof, Liao, Zhongquan, Dominic, Anna Maria, Nia, Ali Shaygan, Dong, Renhao, Zschech, Ehrenfried, Turchanin, Andrey, Heine, Thomas, Yu, Minghao, Feng, Xinliang

The anion-intercalation chemistries of graphite have the potential to construct batteries with promising energy and power breakthroughs. Here, we report the use of an ultrathin, positively charged two-dimensional poly(pyridinium salt) membrane (C2DP) as the graphite electrode skin to overcome the critical durability problem. Large-area C2DP enables the conformal coating on the graphite electrode, remarkably alleviating the electrolyte. Meanwhile, the dense face-on oriented single crystals with ultrathin thickness and cationic backbones allow C2DP with high anion-transport capability and selectivity. Such desirable anion-transport properties of C2DP prevent the cation/solvent co-intercalation into the graphite electrode and suppress the consequent structure collapse. An impressive PF6−-intercalation durability is demonstrated for the C2DP-covered graphite electrode, with capacity retention of 92.8% after 1000 cycles at 1 C and Coulombic efficiencies of > 99%. The feasibility of constructing artificial ion-regulating electrode skins with precisely customized two-dimensional polymers offers viable means to promote problematic battery chemistries.

Loading...
Thumbnail Image
Item

Molecularly Engineered Black Phosphorus Heterostructures with Improved Ambient Stability and Enhanced Charge Carrier Mobility

2021, Shi, Huanhuan, Fu, Shuai, Liu, Yannan, Neumann, Christof, Wang, Mingchao, Dong, Haiyun, Kot, Piotr, Bonn, Mischa, Wang, Hai I., Turchanin, Andrey, Schmidt, Oliver G., Shaygan Nia, Ali, Yang, Sheng, Feng, Xinliang

Overcoming the intrinsic instability and preserving unique electronic properties are key challenges for the practical applications of black phosphorus (BP) under ambient conditions. Here, it is demonstrated that molecular heterostructures of BP and hexaazatriphenylene derivatives (BP/HATs) enable improved environmental stability and charge transport properties. The strong interfacial coupling and charge transfer between the HATs and the BP lattice decrease the surface electron density and protect BP sheets from oxidation, resulting in an excellent ambient lifetime of up to 21 d. Importantly, HATs increase the charge scattering time of BP, contributing to an improved carrier mobility of 97 cm2 V-1 s-1 , almost three times of the pristine BP films, based on noninvasive THz spectroscopic studies. The film mobility is an order of magnitude larger than previously reported values in exfoliated 2D materials. The strategy opens up new avenues for versatile applications of BP sheets and provides an effective method for tuning the physicochemical properties of other air-sensitive 2D semiconductors.

Loading...
Thumbnail Image
Item

Controlled growth of transition metal dichalcogenide monolayers using Knudsen-type effusion cells for the precursors

2019, George, Antony, Neumann, Christof, Kaiser, David, Mupparapu, Rajeshkumar, Lehnert, Tibor, Hübner, Uwe, Tang, Zian, Winter, Andreas, Kaiser, Ute, Staude, Isabelle, Turchanin, Andrey

Controlling the flow rate of precursors is essential for the growth of high quality monolayer single crystals of transition metal dichalcogenides (TMDs) by chemical vapor deposition. Thus, introduction of an excess amount of the precursors affects reproducibility of the growth process and results in the formation of TMD multilayers and other unwanted deposits. Here we present a simple method for controlling the precursor flow rates using the Knudsen-type effusion cells. This method results in a highly reproducible growth of large area and high density TMD monolayers. The size of the grown crystals can be adjusted between 10 and 200 μm. We characterized the grown MoS2 and WS2 monolayers by optical, atomic force and transmission electron microscopies as well as by x-ray photoelectron, Raman and photoluminescence spectroscopies, and by electrical transport measurements showing their high optical and electronic quality based on the single crystalline nature.

Loading...
Thumbnail Image
Item

Water-Soluble Polymeric Carbon Nitride Colloidal Nanoparticles for Highly Selective Quasi-Homogeneous Photocatalysis

2019, Krivtsov, Igor, Mitoraj, Dariusz, Adler, Christiane, Ilkaeva, Marina, Sardo, Mariana, Mafra, Luis, Neumann, Christof, Turchanin, Andrey, Li, Chunyu, Dietzek, Benjamin, Leiter, Robert, Biskupek, Johannes, Kaiser, Ute, Im, Changbin, Kirchhoff, Björn, Jacob, Timo, Beranek, Radim

Heptazine-based polymeric carbon nitrides (PCN) are promising photocatalysts for light-driven redox transformations. However, their activity is hampered by low surface area resulting in low concentration of accessible active sites. Herein, we report a bottom-up preparation of PCN nanoparticles with a narrow size distribution (ca. 10±3 nm), which are fully soluble in water showing no gelation or precipitation over several months. They allow photocatalysis to be carried out under quasi-homogeneous conditions. The superior performance of water-soluble PCN, compared to conventional solid PCN, is shown in photocatalytic H2O2 production via reduction of oxygen accompanied by highly selective photooxidation of 4-methoxybenzyl alcohol and benzyl alcohol or lignocellulose-derived feedstock (ethanol, glycerol, glucose). The dissolved photocatalyst can be easily recovered and re-dissolved by simple modulation of the ionic strength of the medium, without any loss of activity and selectivity. © 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

Loading...
Thumbnail Image
Item

Ultrathin positively charged electrode skin for durable anion-intercalation battery chemistries

2023, Sabaghi, Davood, Wang, Zhiyong, Bhauriyal, Preeti, Lu, Qiongqiong, Morag, Ahiud, Mikhailovia, Daria, Hashemi, Payam, Li, Dongqi, Neumann, Christof, Liao, Zhongquan, Dominic, Anna Maria, Nia, Ali Shaygan, Dong, Renhao, Zschech, Ehrenfried, Turchanin, Andrey, Heine, Thomas, Yu, Minghao, Feng, Xinliang

The anion-intercalation chemistries of graphite have the potential to construct batteries with promising energy and power breakthroughs. Here, we report the use of an ultrathin, positively charged two-dimensional poly(pyridinium salt) membrane (C2DP) as the graphite electrode skin to overcome the critical durability problem. Large-area C2DP enables the conformal coating on the graphite electrode, remarkably alleviating the electrolyte. Meanwhile, the dense face-on oriented single crystals with ultrathin thickness and cationic backbones allow C2DP with high anion-transport capability and selectivity. Such desirable anion-transport properties of C2DP prevent the cation/solvent co-intercalation into the graphite electrode and suppress the consequent structure collapse. An impressive PF6−-intercalation durability is demonstrated for the C2DP-covered graphite electrode, with capacity retention of 92.8% after 1000 cycles at 1 C and Coulombic efficiencies of > 99%. The feasibility of constructing artificial ion-regulating electrode skins with precisely customized two-dimensional polymers offers viable means to promote problematic battery chemistries.

Loading...
Thumbnail Image
Item

1D p–n Junction Electronic and Optoelectronic Devices from Transition Metal Dichalcogenide Lateral Heterostructures Grown by One-Pot Chemical Vapor Deposition Synthesis

2021, Najafidehaghani, Emad, Gan, Ziyang, George, Antony, Lehnert, Tibor, Ngo, Gia Quyet, Neumann, Christof, Bucher, Tobias, Staude, Isabelle, Kaiser, David, Vogl, Tobias, Hübner, Uwe, Kaiser, Ute, Eilenberger, Falk, Turchanin, Andrey

Lateral heterostructures of dissimilar monolayer transition metal dichalcogenides provide great opportunities to build 1D in-plane p–n junctions for sub-nanometer thin low-power electronic, optoelectronic, optical, and sensing devices. Electronic and optoelectronic applications of such p–n junction devices fabricated using a scalable one-pot chemical vapor deposition process yielding MoSe2-WSe2 lateral heterostructures are reported here. The growth of the monolayer lateral heterostructures is achieved by in situ controlling the partial pressures of the oxide precursors by a two-step heating protocol. The grown lateral heterostructures are characterized structurally and optically using optical microscopy, Raman spectroscopy/microscopy, and photoluminescence spectroscopy/microscopy. High-resolution transmission electron microscopy further confirms the high-quality 1D boundary between MoSe2 and WSe2 in the lateral heterostructure. p–n junction devices are fabricated from these lateral heterostructures and their applicability as rectifiers, solar cells, self-powered photovoltaic photodetectors, ambipolar transistors, and electroluminescent light emitters are demonstrated. © 2021 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH