Search Results

Now showing 1 - 3 of 3
  • Item
    An adaptive multi level Monte-Carlo method with stochastic bounds for quantities of interest in groundwater flow with uncertain data
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2015) Eigel, Martin; Merdon, Christian; Neumann, Johannes
    The focus of this work is the introduction of some computable a posteriori error control to the popular multilevel Monte Carlo sampling for PDE with stochastic data. We are especially interested in applications in the geosciences such as groundwater flow with rather rough stochastic fields for the conductive permeability. With a spatial discretisation based on finite elements, a goal functional is defined which encodes the quantity of interest. The devised goal-oriented error estimator enables to determine guaranteed a posteriori error bounds for this quantity. In particular, it allows for the adaptive refinement of the mesh hierarchy used in the multilevel Monte Carlo simulation. In addition to controlling the deterministic error, we also suggest how to treat the stochastic error in probability. Numerical experiments illustrate the performance of the presented adaptive algorithm for a posteriori error control in multilevel Monte Carlo methods. These include a localised goal with problem-adapted meshes and a slit domain example. The latter demonstrates the refinement of regions with low solution regularity based on an inexpensive explicit error estimator in the multilevel algorithm.
  • Item
    Stochastic topology optimisation with hierarchical tensor reconstruction
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2016) Eigel, Martin; Neumann, Johannes; Schneider, Reinhold; Wolf, Sebastian
    A novel approach for risk-averse structural topology optimization under uncertainties is presented which takes into account random material properties and random forces. For the distribution of material, a phase field approach is employed which allows for arbitrary topological changes during optimization. The state equation is assumed to be a high-dimensional PDE parametrized in a (finite) set of random variables. For the examined case, linearized elasticity with a parametric elasticity tensor is used. Instead of an optimization with respect to the expectation of the involved random fields, for practical purposes it is important to design structures which are also robust in case of events that are not the most frequent. As a common risk-aware measure, the Conditional Value at Risk (CVaR) is used in the cost functional during the minimization procedure. Since the treatment of such high-dimensional problems is a numerically challenging task, a representation in the modern hierarchical tensor train format is proposed. In order to obtain this highly efficient representation of the solution of the random state equation, a tensor completion algorithm is employed which only required the pointwise evaluation of solution realizations. The new method is illustrated with numerical examples and compared with a classical Monte Carlo sampling approach.
  • Item
    SDE based regression for random PDEs
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2015) Anker, Felix; Bayer, Christian; Eigel, Martin; Ladkau, Marcel; Neumann, Johannes; Schoenmakers, John G.M.
    A simulation based method for the numerical solution of PDE with random coefficients is presented. By the Feynman-Kac formula, the solution can be represented as conditional expectation of a functional of a corresponding stochastic differential equation driven by independent noise. A time discretization of the SDE for a set of points in the domain and a subsequent Monte Carlo regression lead to an approximation of the global solution of the random PDE. We provide an initial error and complexity analysis of the proposed method along with numerical examples illustrating its behaviour.