Search Results

Now showing 1 - 2 of 2
  • Item
    Measurement of Water Vapor Condensation on Apple Surfaces during Controlled Atmosphere Storage
    (Basel : MDPI, 2023) Linke, Manfred; Praeger, Ulrike; Neuwald, Daniel A.; Geyer, Martin
    Apples are stored at temperatures close to 0 °C and high relative humidity (up to 95%) under controlled atmosphere conditions. Under these conditions, the cyclic operation of the refrigeration machine and the associated temperature fluctuations can lead to localized undershoots of the dew point on fruit surfaces. The primary question for the present study was to prove that such condensation processes can be measured under practical conditions during apple storage. Using the example of a measuring point in the upper apple layer of a large bin in the supply air area, this evidence was provided. Using two independent measuring methods, a wetness sensor attached to the apple surface and determination of climatic conditions near the fruit, the phases of condensation, namely active condensation and evaporation, were measured over three weeks as a function of the operating time of the cooling system components (refrigeration machine, fans, defrosting regime). The system for measurement and continuous data acquisition in the case of an airtight CA-storage room is presented and the influence of the operation of the cooling system components in relation to condensation phenomena was evaluated. Depending on the set point specifications for ventilation and defrost control, condensed water was present on the apple surface between 33.4% and 100% of the duration of the varying cooling/re-warming cycles.
  • Item
    Measuring device for air speed in macroporous media and its application inside apple storage bins
    (Basel : MDPI, 2018) Geyer, Martin; Praeger, Ulrike; Truppel, Ingo; Scaar, Holger; Neuwald, Daniel A.; Jedermann, Reiner; Gottschalk, Klaus
    In cold storage facilities of fruit and vegetables, airflow is necessary for heat removal. The design of storage facilities influences the air speed in the surrounding of the product. Therefore, knowledge about airflow next to the product is important to plan the layout of cold stores adapted to the requirements of the products. A new sensing device (ASL, Air speed logger) is developed for omnidirectional measurement of air speed between fruit or vegetables inside storage bins or in bulk. It consists of four interconnected plastic spheres with 80 mm diameter each, adapted to the size of apple fruit. In the free space between the spheres, silicon diodes are fixed for the airflow measurement based on a calorimetric principle. Battery and data logger are mounted inside the spheres. The device is calibrated in a wind tunnel in a measuring range of 0–1.3 m/s. Air speed measurements in fruit bulks on laboratory scale and in an industrial fruit store show air speeds in gaps between fruit with high stability at different airflow levels. Several devices can be placed between stored products for determination of the air speed distribution inside bulks or bin stacks in a storage room.