Search Results

Now showing 1 - 2 of 2
  • Item
    A hyperbranched dopamine-containing PEG-based polymer for the inhibition of α-synuclein fibrillation
    (Orlando, Fla. : Academic Press, 2015) Breydo, Leonid; Newland, Ben; Zhang, Hong; Rosser, Anne; Werner, Carsten; Uversky, Vladimir N.; Wang, Wenxin
    Aggregation of α-synuclein is believed to play an important role in Parkinson's disease and in other neurodegenerative maladies. Small molecule inhibitors of this process are among the most promising drug candidates for neurodegenerative diseases. Dendrimers have also been studied for anti-fibrillation applications but they can be difficult and expensive to synthetize. Here we show that RAFT polymerization can be used to produce a hyperbranched polyethylene glycol structure via a one-pot reaction. This polymer included a dopamine moiety, a known inhibitor of α-synuclein fibril formation. Dopamine within the polymer structure was capable of aggregation inhibition, although not to the same degree as free dopamine. This result opens up new avenues for the use of controlled radical polymerizations as a means of preparing hyperbranched polymers for anti-fibrillation activity, but shows that the incorporation of functional groups from known small molecules within polymers may alter their biological activity.
  • Item
    Static and dynamic 3D culture of neural precursor cells on macroporous cryogel microcarriers
    (Amsterdam [u.a.] : Elsevier, 2020) Newland, Ben; Ehret, Fanny; Hoppe, Franziska; Eigel, Dimitri; Pette, Dagmar; Newland, Heike; Welzel, Petra B.; Kempermann, Gerd; Werner, Carsten
    Neural precursor cells have been much studied to further our understanding of the far-reaching and controversial question of adult neurogenesis. Currently, differentiation of primary neural precursor cells from the mouse dentate gyrus via 2-dimentional in vitro culture yields low numbers of neurons, a major hindrance to the field of study. 3-dimentional “neurosphere” culture allows better 3D cell-cell contact, but control over cell differentiation is poor because nutrition and oxygen restrictions at the core of the sphere causes spontaneous differentiation, predominantly to glial cells, not neurons. Our group has developed macroporous scaffolds, which overcome the above-mentioned problems, allowing long-term culture of neural stem cells, which can be differentiated into a much higher yield of neurons. Herein we describe a method for culturing neural precursor cells on RGD peptide functionalized-heparin containing cryogel scaffolds, either in standard non-adherent well-plates (static culture) or in spinner flasks (dynamic culture). This method includes: • The synthesis and characterization of heparin based microcarriers. • A “static” 3D culture method for that does not require spinner flask equipment. • “Dynamic” culture in which cell loaded microcarriers are transferred to a spinner flask. © 2020 The Authors