Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Money makes our world go round - funding landscape for polar early-career scientists in Germany

2022, Nicola, Lena, Loebel, Erik, Zuhr, Alexandra M.

A lot of things in life need money and so does polar science: money is needed to participate in conferences, undertake fieldwork campaigns or pay for salaries, such as in PhD projects or permanent research positions. To give an overview on the general funding landscape for polar early-career scientists in Germany, APECS Germany (the German National Committee of the Association of Polar Early Career Scientists, APECS) has started to host a list of grant, fellowship and other funding opportunities at https://apecs-germany.de/funding/ (last access: 15 October 2022). This is visualized in Fig. . Once a suitable funding scheme has been found, grant writing requires good preparation, a well-structured and written proposal, and several back-up plans.

Loading...
Thumbnail Image
Item

Revisiting temperature sensitivity: how does Antarctic precipitation change with temperature?

2023, Nicola, Lena, Notz, Dirk, Winkelmann, Ricarda

With progressing global warming, snowfall in Antarctica is expected to increase, which could counteract or even temporarily overcompensate increased ice-sheet mass losses caused by increased ice discharge and melting. For sea-level projections it is therefore vital to understand the processes determining snowfall changes in Antarctica. Here we revisit the relationship between Antarctic temperature changes and precipitation changes, identifying and explaining regional differences and deviations from the theoretical approach based on the Clausius-Clapeyron relationship. Analysing the latest estimates from global (CMIP6, Coupled Model Intercomparison Project Phase 6) and regional (RACMO2.3) model projections, we find an average increase of 5.5 % in annual precipitation over Antarctica per degree of warming, with a minimum sensitivity of 2 % K-1 near Siple Coast and a maximum sensitivity of > 10 % K-1 at the East Antarctic plateau region. This large range can be explained by the prevailing climatic conditions, with local temperatures determining the Clausius-Clapeyron sensitivity that is counteracted in some regions by the prevalence of the coastal wind regime. We compare different approaches of deriving the sensitivity factor, which in some cases can lead to sensitivity changes of up to 7 percentage points for the same model. Importantly, local sensitivity factors are found to be strongly dependent on the warming level, suggesting that some ice-sheet models which base their precipitation estimates on parameterisations derived from these sensitivity factors might overestimate warming-induced snowfall changes, particularly in high-emission scenarios. This would have consequences for Antarctic sea-level projections for this century and beyond.