Search Results

Now showing 1 - 2 of 2
  • Item
    Crystalline Carbosilane-Based Block Copolymers: Synthesis by Anionic Polymerization and Morphology Evaluation in the Bulk State
    (Weinheim : Wiley-VCH, 2022) Hübner, Hanna; Niebuur, Bart‐Jan; Janka, Oliver; Gemmer, Lea; Koch, Marcus; Kraus, Tobias; Kickelbick, Guido; Stühn, Bernd; Gallei, Markus
    Block copolymers (BCPs) in the bulk state are known to self-assemble into different morphologies depending on their polymer segment ratio. For polymers with amorphous and crystalline BCP segments, the crystallization process can be influenced significantly by the corresponding bulk morphology. Herein, the synthesis of the amorphous-crystalline BCP poly(dimethyl silacyclobutane)-block-poly(2vinyl pyridine), (PDMSB-b-P2VP), by living anionic polymerization is reported. Polymers with overall molar masses ranging from 17 400 g to 592 200 g mol−1 and PDMSB contents of 4.8–83.9 vol% are synthesized and characterized by size-exclusion chromatography and NMR spectroscopy. The bulk morphology of the obtained polymers is investigated by means of transmission electron microscopy and small angle X-ray scattering, revealing a plethora of self-assembled structures, providing confined and nonconfined conditions. Subsequently, the influence of the previously determined morphologies and their resulting confinement on the crystallinity and crystallization behavior of PDMSB is analyzed via differential scanning calorimetry and powder X-ray diffraction. Here, fractionated crystallization and supercooling effects are observable as well as different diffraction patterns of the PDMSB crystallites for confined and nonconfined domains.
  • Item
    Bifunctional Carbanionic Synthesis of Fully Bio-Based Triblock Structures Derived from β-Farnesene and ll-Dilactide: Thermoplastic Elastomers
    (Weinheim : Wiley-VCH, 2023) Meier‐Merziger, Moritz; Imschweiler, Jan; Hartmann, Frank; Niebuur, Bart‐Jan; Kraus, Tobias; Gallei, Markus; Frey, Holger
    Current environmental challenges and the shrinking fossil-fuel feedstock are important criteria for the next generation of polymer materials. In this context, we present a fully bio-based material, which shows promise as a thermoplastic elastomer (TPE). Due to the use of β-farnesene and L-lactide as monomers, bio-based feedstocks, namely sugar cane and corn, can be used. A bifunctional initiator for the carbanionic polymerization was employed, to permit an efficient synthesis of ABA-type block structures. In addition, the “green” solvent MTBE (methyl tert-butyl ether) was used for the anionic polymerisation, enabling excellent solubility of the bifunctional anionic initiator. This afforded low dispersity (Đ=1.07 to 1.10) and telechelic polyfarnesene macroinitiators. These were employed for lactide polymerization to obtain H-shaped triblock copolymers. TEM and SAXS revealed clearly phase-separated morphologies, and tensile tests demonstrated elastic mechanical properties. The materials featured two glass transition temperatures, at - 66 °C and 51 °C as well as gyroid or cylindrical morphologies, resulting in soft elastic materials at room temperature.