Search Results

Now showing 1 - 10 of 11
Loading...
Thumbnail Image
Item

Analysis of electronic properties frommagnetotransport measurements on Ba(Fe1-xNix)2As2 thin films

2020, Shipulin, I., Richter, S., Thomas, A.A., Nielsch, K., Hühne, R., Martovitsky, V.

We performed a detailed structural, magnetotransport, and superconducting analysis of thin epitaxial Ba(Fe1-xNix)2As2 films with Ni doping of x = 0.05 and 0.08, as prepared by pulsed laser deposition. X-ray diffraction studies demonstrate the high crystalline perfection of the films, which have a similar quality to single crystals. Furthermore, magnetotransport measurements of the films were performed in magnetic fields up to 9 T. The results we used to estimate the density of electronic states at the Fermi level, the coefficient of electronic heat capacity, and other electronic parameters for this compound, in their dependence on the dopant concentration within the framework of the Ginzburg-Landau-Abrikosov-Gorkov theory. The comparison of the determined parameters with measurement data on comparable Ba(Fe1-xNix)2As2 single crystals shows good agreement, which confirms the high quality of the obtained films.

Loading...
Thumbnail Image
Item

Discovery of ZrCoBi based half Heuslers with high thermoelectric conversion efficiency

2018, Zhu, H., He, R., Mao, J., Zhu, Q., Li, C., Sun, J., Ren, W., Wang, Y., Liu, Z., Tang, Z., Sotnikov, A., Wang, Z., Broido, D., Singh, D.J., Chen, G., Nielsch, K., Ren, Z.

Thermoelectric materials are capable of converting waste heat into electricity. The dimensionless figure-of-merit (ZT), as the critical measure for the material's thermoelectric performance, plays a decisive role in the energy conversion efficiency. Half-Heusler materials, as one of the most promising candidates for thermoelectric power generation, have relatively low ZTs compared to other material systems. Here we report the discovery of p-type ZrCoBi-based half-Heuslers with a record-high ZT of ∼1.42 at 973 K and a high thermoelectric conversion efficiency of ∼9% at the temperature difference of ∼500 K. Such an outstanding thermoelectric performance originates from its unique band structure offering a high band degeneracy (N v) of 10 in conjunction with a low thermal conductivity benefiting from the low mean sound velocity (v m ∼2800 m s-1). Our work demonstrates that ZrCoBi-based half-Heuslers are promising candidates for high-temperature thermoelectric power generation.

Loading...
Thumbnail Image
Item

The effect of Ti or Zr additions on the microstructure and magnetic properties of MnAl-C alloys

2021, Feng, L., Nielsch, K., Woodcock, T.

As-transformed and hot-deformed samples of MnAl-C alloys with Ti or Zr additions have been produced and characterized using magnetometry, X-ray diffraction, scanning electron microscopy and transmission electron microscopy. Both Ti and Zr additions in MnAl-C alloys form carbide primary phases, TiC and ZrC, which consume the carbon meant to be dissolved in the metastable τ-phase to stabilize it against decomposition. With these two additions, the Curie temperature of τ-phase increases while its stability against decomposition decreases. After hot deformation, the MnAl-C alloys with Ti or Zr additions have lower polarisation and remanence due to the reduced stability of the τ-phase. Adding extra carbon along with Ti to a MnAl-C alloy in order to compensate for the C lost on formation of TiC restored the original stability of the τ-phase. After hot-deformation, this alloy exhibited a lower polarisation and remanence owing to the unexpected formation of the γ2-phase.

Loading...
Thumbnail Image
Item

Thickness dependence of the anomalous Nernst effect and the Mott relation of Weyl semimetal Co2MnGa thin films

2020, Park, G.-H., Reichlova, H., Schlitz, R., Lammel, M., Markou, A., Swekis, P., Ritzinger, P., Kriegner, D., Noky, J., Gayles, J., Sun, Y., Felser, C., Nielsch, K., Goennenwein, S.T.B., Thomas, A.

We report a robust anomalous Nernst effect in Co2MnGa thin films in the thickness regime between 20 and 50 nm. The anomalous Nernst coefficient varied in the range of -2.0 to -3.0 μV/K at 300 K. We demonstrate that the anomalous Hall and Nernst coefficients exhibit similar behavior and fulfill the Mott relation. We simultaneously measure all four transport coefficients of the longitudinal resistivity, transversal resistivity, Seebeck coefficient, and anomalous Nernst coefficient. We connect the values of the measured and calculated Nernst conductivity by using the remaining three magnetothermal transport coefficients, where the Mott relation is still valid. The intrinsic Berry curvature dominates the transport due to the relation between the longitudinal and transversal transport. Therefore, we conclude that the Mott relationship is applicable to describe the magnetothermoelectric transport in Weyl semimetal Co2MnGa as a function of film thickness.

Loading...
Thumbnail Image
Item

Towards uniform electrochemical porosification of bulk HVPE-grown GaN

2019, Monaico, E., Moise, C., Mihai, G., Ursaki, V.V., Leistner, K., Tiginyanu, I.M., Enachescu, M., Nielsch, K.

In this paper, we report on results of a systematic study of porous morphologies obtained using anodization of HVPE-grown crystalline GaN wafers in HNO3, HCl, and NaCl solutions. The anodization-induced nanostructuring is found to proceed in different ways on N-and Ga-faces of polar GaN substrates. Complex pyramidal structures are disclosed and shown to be composed of regions with the degree of porosity modulated along the pyramid surface. Depending on the electrolyte and applied anodization voltage, formation of arrays of pores or nanowires has been evidenced near the N-face of the wafer. By adjusting the anodization voltage, we demonstrate that both current-line oriented pores and crystallographic pores are generated. In contrast to this, porosification of the Ga-face proceeds from some imperfections on the surface and develops in depth up to 50 μm, producing porous matrices with pores oriented perpendicularly to the wafer surface, the thickness of the pore walls being controlled by the applied voltage. The observed peculiarities are explained by different values of the electrical conductivity of the material near the two wafer surfaces.

Loading...
Thumbnail Image
Item

Thermoelectric properties of silicon and recycled silicon sawing waste

2019, He, R., Heyn, W., Thiel, F., Pérez, N., Damm, C., Pohl, D., Rellinghaus, B., Reimann, C., Beier, M., Friedrich, J., Zhu, H., Ren, Z., Nielsch, K., Schierning, G.

Large-scale-applicable thermoelectric materials should be both self-sustaining, in order to survive long-term duty cycles, and nonpolluting. Among all classes of known thermoelectric materials, these criteria reduce the available candidate pool, leaving silicon as one of the remaining options. Here we first review the thermoelectric properties of various silicon-related materials with respect to their morphologies and microstructures. We then report the thermoelectric properties of silicon sawing wastes recycled from silicon wafer manufacturing. We obtain a high power factor of ∼32 μW cm−1 K−2 at 1273 K with 6% phosphorus substitution in the Si crystal, a value comparable to that of phosphorus-doped silicon-germanium alloys. Our work suggests the large-scale thermoelectric applicability of recycled silicon that would otherwise contribute to the millions of tons of industrial waste produced by the semiconductor industry.

Loading...
Thumbnail Image
Item

Two-step magnetization reversal FORC fingerprint of coupled bi-segmented Ni/Co magnetic nanowire arrays

2018, Fernández, J.G., Martínez, V.V., Thomas, A., de la Prida Pidal, V.M., Nielsch, K.

First Order Reversal Curve (FORC) analysis has been established as an appropriate method to investigate the magnetic interactions among complex ferromagnetic nanostructures. In this work, the magnetization reversal mechanism of bi-segmented nanowires composed by long Co and Ni segments contacted at one side was investigated, as a model system to identify and understand the FORC fingerprint of a two-step magnetization reversal process. The resulting hysteresis loop of the bi-segmented nanowire array exhibits a completely different magnetic behavior than the one expected for the magnetization reversal process corresponding to each respective Co and Ni nanowire arrays, individually. Based on the FORC analysis, two possible magnetization reversal processes can be distinguished as a consequence of the ferromagnetic coupling at the interface between the Ni and Co segments. Depending on the relative difference between the magnetization switching fields of each segment, the softer magnetic phase induces the switching of the harder one through the injection and propagation of a magnetic domain wall when both switching fields are comparable. On the other hand, if the switching fields values differ enough, the antiparallel magnetic configuration of nanowires is also possible but energetically unfavorable, thus resulting in an unstable magnetic configuration. Making use of the different temperature dependence of the magnetic properties for each nanowire segment with different composition, one of the two types of magnetization reversal is favored, as demonstrated by FORC analyses.

Loading...
Thumbnail Image
Item

Discovery of TaFeSb-based half-Heuslers with high thermoelectric performance

2019, Zhu, H., Mao, J., Li, Y., Sun, J., Wang, Y., Zhu, Q., Li, G., Song, Q., Zhou, J., Fu, Y., He, R., Tong, T., Liu, Z., Ren, W., You, L., Wang, Z., Luo, J., Sotnikov, A., Bao, J., Nielsch, K., Chen, G., Singh, D.J., Ren, Z.

Discovery of thermoelectric materials has long been realized by the Edisonian trial and error approach. However, recent progress in theoretical calculations, including the ability to predict structures of unknown phases along with their thermodynamic stability and functional properties, has enabled the so-called inverse design approach. Compared to the traditional materials discovery, the inverse design approach has the potential to substantially reduce the experimental efforts needed to identify promising compounds with target functionalities. By adopting this approach, here we have discovered several unreported half-Heusler compounds. Among them, the p-type TaFeSb-based half-Heusler demonstrates a record high ZT of ~1.52 at 973 K. Additionally, an ultrahigh average ZT of ~0.93 between 300 and 973 K is achieved. Such an extraordinary thermoelectric performance is further verified by the heat-to-electricity conversion efficiency measurement and a high efficiency of ~11.4% is obtained. Our work demonstrates that the TaFeSb-based half-Heuslers are highly promising for thermoelectric power generation.

Loading...
Thumbnail Image
Item

Modulations in martensitic Heusler alloys originate from nanotwin ordering

2018, Gruner, M.E., Niemann, R., Entel, P., Pentcheva, R., Rößler, U.K., Nielsch, K., Fähler, S.

Heusler alloys exhibiting magnetic and martensitic transitions enable applications like magnetocaloric refrigeration and actuation based on the magnetic shape memory effect. Their outstanding functional properties depend on low hysteresis losses and low actuation fields. These are only achieved if the atomic positions deviate from a tetragonal lattice by periodic displacements. The origin of the so-called modulated structures is the subject of much controversy: They are either explained by phonon softening or adaptive nanotwinning. Here we used large-scale density functional theory calculations on the Ni2MnGa prototype system to demonstrate interaction energy between twin boundaries. Minimizing the interaction energy resulted in the experimentally observed ordered modulations at the atomic scale, it explained that a/b twin boundaries are stacking faults at the mesoscale, and contributed to the macroscopic hysteresis losses. Furthermore, we found that phonon softening paves the transformation path towards the nanotwinned martensite state. This unified both opposing concepts to explain modulated martensite.

Loading...
Thumbnail Image
Item

The Influence of Cu-Additions on the Microstructure, Mechanical and Magnetic Properties of MnAl-C Alloys

2020, Jürries, F., Freudenberger, J., Nielsch, K., Woodcock, T.G.

Alloys of the form (Mn54Al44C2)100-xCux (with x = 0, 1, 2, 4 and 6) were produced by induction melting. After homogenisation and quenching, most of the alloys consist entirely of the retained ε-phase, except for x = 6, in which the κ-phase was additionally present. After subsequent annealing, the alloys with x ≤ 2 consist entirely of a Cu-doped, ferromagnetic τ-phase, whereas the alloys with x > 2 additionally contain the κ-phase. The polarisation of the alloys at an applied field of 14 T decreases with increasing Cu-content, which is attributed i) to the dilution of the magnetic moment of the τ-phase unit cell by the Cu atoms, which do not carry a magnetic moment, and ii) at higher Cu-contents, to the formation of the κ-phase, which has a much lower polarisation than the τ-phase and therefore dilutes the net polarisation of the alloys. The Curie temperature was not affected by the Cu-additions. The stress needed to die-upset the alloys with x ≤ 2 was similar to that of the undoped alloy, whereas it was much lower for x = 4 and 6, due to the presence of intergranular layers of the κ-phase. The extrinsic magnetic properties of alloys with x ≤ 2 were improved by die-upsetting, whereas decomposition of the τ-phase during processing had a deleterious effect on the magnetic properties for higher Cu-additions.