Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Influence of the magnet aspect ratio on the dynamic stiffness of a rotating superconducting magnetic bearing

2020, Espenhahn, Tilo, Wunderwald, Florian, Möller, Marcel, Sparing, Maria, Hossain, Mahmud, Fuchs, Günter, Abdkader, Anwar, Cherif, Chokri, Nielsch, Kornelius, Hühne, Ruben

Rotating superconducting bearings promise great potential in applications due to their frictionless operation. However, these bearings show a lower dynamic stiffness and damping coefficient compared to ball bearings. In this paper we studied a bearing consisting of a fixed YBCO ring and a rotating magnet above the superconductor. The influence of the magnet aspect ratio on the dynamic stiffness of the bearing was investigated in order to find an optimized size. To change the aspect ratio, we kept the inner diameter of the ring constant and reduced the outer diameter while increasing the ring height. In addition to these magnets, one magnet with a reduced cross-sectional area was studied. The aspect ratio selection was based on preliminary magnetic flux density simulations, which compared the magnetic flux density distribution and the potential radial force for different aspect ratios. To conduct the measurements, the field-cooled magnets were displaced in a lateral direction and then released, resulting in a damped oscillation. The dynamic stiffness constants were calculated for each bearing from the relation of three axis acceleration measurements for different field cooling heights. The comparison of the stiffness constants for the different bearings revealed an optimal aspect ratio for the given YBCO ring. This optimum is almost independent from the cooling height. The comparison between the two magnet rings with similar diameters and different heights was similar for the bearing characteristics at a low cooling height, whereas a significant reduction of stiffness was observed with a larger cooling distance. The difference is bigger for the magnet with a reduced height. The optimal aspect ratio as well as the stiffness dependence on the cross-sectional area was confirmed by simulations of the magnetic flux density distribution. © 2019 IOP Publishing Ltd.

Loading...
Thumbnail Image
Item

Analysis of the high-speed rotary motion of a superconducting magnetic bearing during ring spinning

2020, Sparing, Maria, Espenhahn, Tilo, Fuchs, Günter, Hossain, Mahmud, Abdkader, Anwar, Nielsch, Kornelius, Cherif, Chokri, Hühne, Ruben

Ring spinning is the leading textile technology for the production of short staple yarn, which runs commercially up to a maximum speed of 25 000 rpm. Higher speeds result in yarn damage mainly due to frictional heat. To eliminate this limitation, a friction-free superconducting magnetic bearing (SMB) was introduced as alternative high-speed yarn twist element consisting of a cryostat with an array of superconductors and a levitating permanent magnet ring with a yarn guide. Whereas stable spinning was possible until 30 000 rpm, it turned out that the new SMB twist element is more susceptible to external disturbances resulting in oscillating movements of the magnet. Therefore, a measurement system with an array of 5 synchronized optical laser triangulation sensors and one tachometer was implemented to analyse this motion in detail during spinning with high speeds. To test the system, the spinning speed was varied between 10 000 rpm and 21 000 rpm for different yarn qualities. In general, the magnetic ring oscillates around its centre position with the rotation frequency and a peak amplitude between 10 μm and 14 μm, which might be due to a small imbalance of the magnet. At the same time, the small tilt of the ring remained fixed with respect to the machine for all speeds. In addition, larger oscillation amplitudes of up to 300 μm are observed at 18 Hz for selected spinning parameters arising most probably from resonance effects with machine vibrations.