Search Results

Now showing 1 - 2 of 2
  • Item
    How to grow single-crystalline and epitaxial NiTi films in (100)- and (111)-orientation
    (Bristol : IOP Publishing, 2023) Lünser, Klara; Undisz, Andreas; Nielsch, Kornelius; Fähler, Sebastian
    Understanding the martensitic microstructure in nickel-titanium (NiTi) thin films helps to optimize their properties for applications in microsystems. Epitaxial and single-crystalline films can serve as model systems to understand the microstructure, as well as to exploit the anisotropic mechanical properties of NiTi. Here, we analyze the growth of NiTi on single-crystalline MgO(100) and Al2O3(0001) substrates and optimize film and buffer deposition conditions to achieve epitaxial films in (100)- and (111)-orientation. On MgO(100), we compare the transformation behavior and crystal quality of (100)-oriented NiTi films on different buffer layers. We demonstrate that a vanadium buffer layer helps to decrease the low-angle grain boundary density in the NiTi film, which inhibits undesired growth twins and leads to higher transformation temperatures. On Al2O3(0001), we analyze the orientation of a chromium buffer layer and find that it grows (111)-oriented only in a narrow temperature range around 500 ∘C. By depositing the Cr buffer below the NiTi film, we can prepare (111)-oriented, epitaxial films with transformation temperatures above room temperature. Transmission electron microscopy confirms a martensitic microstructure with Guinier Preston-zone precipitates at room temperature. We identify the deposition conditions to approach the ideal single crystalline state, which is beneficial for the analysis of the martensitic microstructure and anisotropic mechanical properties in different film orientations.
  • Item
    Origin and avoidance of double peaks in the induced voltage of a thermomagnetic generator for harvesting low-grade waste heat
    (Bristol : IOP Publishing, 2022) Dzekan, Daniel; Kischnik, Tim D.; Diestel, Anett; Nielsch, Kornelius; Fähler, Sebastian
    Thermomagnetic harvesting is an emerging approach used to convert low-grade waste heat to electricity, which recently obtained a boost due to the development of both more efficient functional materials and innovative device concepts. Here, we examine a thermomagnetic generator which utilizes gadolinium as the thermomagnetic material and report on the double peaks of the induced voltage. Using a combination of experiments and theory we show that these double peaks originate from the interaction between an asymmetric magnetization curve and a pretzel-like magnetic field topology. Double peaks are detrimental for the output power and can be avoided by matching the magnetization change by adjusting the cold and hot fluid flow.