Search Results

Now showing 1 - 10 of 18
  • Item
    Voltage‐Controlled Deblocking of Magnetization Reversal in Thin Films by Tunable Domain Wall Interactions and Pinning Sites
    (Hoboken, NJ : Wiley, 2020) Zehner, Jonas; Soldatov, Ivan; Schneider, Sebastian; Heller, René; Khojasteh, Nasrin B.; Schiemenez, Sandra; Fähler, Sebastian; Nielsch, Kornelius; Schäfer, Rudolf; Leistner, Karin
    High energy efficiency of magnetic devices is crucial for applications such as data storage, computation, and actuation. Redox‐based (magneto‐ionic) voltage control of magnetism is a promising room‐temperature pathway to improve energy efficiency. However, for ferromagnetic metals, the magneto‐ionic effects studied so far require ultrathin films with tunable perpendicular magnetic anisotropy or nanoporous structures for appreciable effects. This paper reports a fully reversible, low voltage‐induced collapse of coercivity and remanence by redox reactions in iron oxide/iron films with uniaxial in‐plane anisotropy. In the initial iron oxide/iron films, Néel wall interactions stabilize a blocked state with high coercivity. During the voltage‐triggered reduction of the iron oxide layer, in situ Kerr microscopy reveals inverse changes of coercivity and anisotropy, and a coarsening of the magnetic microstructure. These results confirm a magneto‐ionic deblocking mechanism, which relies on changes of the Néel wall interactions, and of the microstructural domain‐wall‐pinning sites. With this approach, voltage‐controlled 180° magnetization switching with high energy‐efficiency is achieved. It opens up possibilities for developing magnetic devices programmable by ultralow power and for the reversible tuning of defect‐controlled materials in general.
  • Item
    Interface-Dominated Topological Transport in Nanograined Bulk Bi2 Te3
    (Weinheim : Wiley-VCH, 2021) Izadi, Sepideh; Han, Jeong Woo; Salloum, Sarah; Wolff, Ulrike; Schnatmann, Lauritz; Asaithambi, Aswin; Matschy, Sebastian; Schlörb, Heike; Reith, Heiko; Perez, Nicolas; Nielsch, Kornelius; Schulz, Stephan; Mittendorff, Martin; Schierning, Gabi
    3D topological insulators (TI) host surface carriers with extremely high mobility. However, their transport properties are typically dominated by bulk carriers that outnumber the surface carriers by orders of magnitude. A strategy is herein presented to overcome the problem of bulk carrier domination by using 3D TI nanoparticles, which are compacted by hot pressing to macroscopic nanograined bulk samples. Bi2Te3 nanoparticles well known for their excellent thermoelectric and 3D TI properties serve as the model system. As key enabler for this approach, a specific synthesis is applied that creates nanoparticles with a low level of impurities and surface contamination. The compacted nanograined bulk contains a high number of interfaces and grain boundaries. Here it is shown that these samples exhibit metallic-like electrical transport properties and a distinct weak antilocalization. A downward trend in the electrical resistivity at temperatures below 5 K is attributed to an increase in the coherence length by applying the Hikami–Larkin–Nagaoka model. THz time-domain spectroscopy reveals a dominance of the surface transport at low frequencies with a mobility of above 103 cm2 V−1 s−1 even at room temperature. These findings clearly demonstrate that nanograined bulk Bi2Te3 features surface carrier properties that are of importance for technical applications.
  • Item
    Phase Selection in Mn–Si Alloys by Fast Solid-State Reaction with Enhanced Skyrmion Stability
    (Weinheim : Wiley-VCH, 2021) Li, Zichao; Xie, Yufang; Yuan, Ye; Ji, Yanda; Begeza, Viktor; Cao, Lei; Hübner, René; Rebohle, Lars; Helm, Manfred; Nielsch, Kornelius; Prucnal, Slawomir; Zhou, Shengqiang
    B20-type transition-metal silicides or germanides are noncentrosymmetric materials hosting magnetic skyrmions, which are promising information carriers in spintronic devices. The prerequisite is to prepare thin films on technology-relevant substrates with magnetic skyrmions stabilized at a broad temperature and magnetic-field working window. A canonical example is the B20-MnSi film grown on Si substrates. However, the as-yet unavoidable contamination with MnSi1.7 occurs due to the lower nucleation temperature of this phase. In this work, a simple and efficient method to overcome this problem and prepare single-phase MnSi films on Si substrates is reported. It is based on the millisecond reaction between metallic Mn and Si using flash-lamp annealing (FLA). By controlling the FLA energy density, single-phase MnSi or MnSi1.7 or their mixture can be grown at will. Compared with bulk MnSi, the prepared MnSi films show an increased Curie temperature of up to 41 K. In particular, the magnetic skyrmions are stable over a much wider temperature and magnetic-field range than reported previously. The results constitute a novel phase selection approach for alloys and can help to enhance specific functional properties, such as the stability of magnetic skyrmions. © 2021 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH
  • Item
    Comparative Study of Onion-like Carbons Prepared from Different Synthesis Routes towards Li-Ion Capacitor Application
    (Basel : MDPI, 2022) Permana, Antonius Dimas Chandra; Ding, Ling; Gonzalez-Martinez, Ignacio Guillermo; Hantusch, Martin; Nielsch, Kornelius; Mikhailova, Daria; Omar, Ahmad
    Li-ion capacitors (LIC) have emerged as a promising hybrid energy storage system in response to increasing energy demands. However, to achieve excellent LIC performance at high rates, along with cycling stability, an alternative anode to graphite is needed. Porous high-surface-area carbons, such as onion-like carbons (OLCs), have been recently found to hold high potential as high-rate-capable LIC anodes. However, a systematic understanding of their synthesis route and morphology is lacking. In this study, OLCs prepared from self-made metal organic frameworks (MOFs) Fe-BTC and Fe-MIL100 by a simple pyrolysis method were compared to OLCs obtained via high-temperature annealing of nanodiamonds. The LICs with OLCs produced from Fe-BTC achieved a maximum energy density of 243 Wh kg−1 and a power density of 20,149 W kg−1. Furthermore, excellent capacitance retention of 78% after 10,000 cycles was demonstrated. LICs with MOF-derived OLCs surpassed the energy and power density of LICs with nanodiamond-derived OLCs. We determined the impact of the MOF precursor structure and morphology on the resulting OLC properties, as well as on the electrochemical performance. Thus, MOF-derived OLCs offer significant potential toward high-performance anode material for LICs, enabling control over structure and morphology, as well as easy scalability for industrial implementation.
  • Item
    High-Pressure-Sintering-Induced Microstructural Engineering for an Ultimate Phonon Scattering of Thermoelectric Half-Heusler Compounds
    (Weinheim : Wiley-VCH, 2021) He, Ran; Zhu, Taishan; Ying, Pingjun; Chen, Jie; Giebeler, Lars; Kühn, Uta; Grossman, Jeffrey C.; Wang, Yumei; Nielsch, Kornelius
    Thermal management is of vital importance in various modern technologies such as portable electronics, photovoltaics, and thermoelectric devices. Impeding phonon transport remains one of the most challenging tasks for improving the thermoelectric performance of certain materials such as half-Heusler compounds. Herein, a significant reduction of lattice thermal conductivity (κL) is achieved by applying a pressure of ≈1 GPa to sinter a broad range of half-Heusler compounds. Contrasting with the common sintering pressure of less than 100 MPa, the gigapascal-level pressure enables densification at a lower temperature, thus greatly modifying the structural characteristics for an intensified phonon scattering. A maximum κL reduction of ≈83% is realized for HfCoSb from 14 to 2.5 W m−1 K−1 at 300 K with more than 95% relative density. The realized low κL originates from a remarkable grain-size refinement to below 100 nm together with the abundant in-grain defects, as determined by microscopy investigations. This work uncovers the phonon transport properties of half-Heusler compounds under unconventional microstructures, thus showing the potential of high-pressure compaction in advancing the performance of thermoelectric materials.
  • Item
    Atom size electron vortex beams with selectable orbital angular momentum
    (London : Nature Publishing Group, 2017) Pohl, Darius; Schneider, Sebastian; Zeiger, Paul; Rusz, Ján; Tiemeijer, Peter; Lazar, Sorin; Nielsch, Kornelius; Rellinghaus, Bernd
    The decreasing size of modern functional magnetic materials and devices cause a steadily increasing demand for high resolution quantitative magnetic characterization. Transmission electron microscopy (TEM) based measurements of the electron energy-loss magnetic chiral dichroism (EMCD) may serve as the needed experimental tool. To this end, we present a reliable and robust electron-optical setup that generates and controls user-selectable single state electron vortex beams with defined orbital angular momenta. Our set-up is based on a standard high-resolution scanning TEM with probe aberration corrector, to which we added a vortex generating fork aperture and a miniaturized aperture for vortex selection. We demonstrate that atom size probes can be formed from these electron vortices and that they can be used for atomic resolution structural and spectroscopic imaging – both of which are prerequisites for future atomic EMCD investigations.
  • Item
    The influence of the in-plane lattice constant on the superconducting transition temperature of FeSe0.7Te0.3 thin films
    (New York : American Institute of Physics, 2017) Yuan, Feifei; Iida, Kazumasa; Grinenko, Vadim; Chekhonin, Paul; Pukenas, Aurimas; Skrotzki, Werner; Sakoda, Masahito; Naito, Michio; Sala, Alberto; Putti, Marina; Yamashita, Aichi; Takano, Yoshihiko; Shi, Zhixiang; Nielsch, Kornelius; Hühne, Ruben
    Epitaxial Fe(Se,Te) thin films were prepared by pulsed laser deposition on (La0.18Sr0.82)(Al0.59Ta0.41)O3 (LSAT), CaF2-buffered LSAT and bare CaF2 substrates, which exhibit an almost identical in-plane lattice parameter. The composition of all Fe(Se,Te) films were determined to be FeSe0.7Te0.3 by energy dispersive X-ray spectroscopy, irrespective of the substrate. Albeit the lattice parameters of all templates have comparable values, the in-plane lattice parameter of the FeSe0.7Te0.3 films varies significantly. We found that the superconducting transition temperature (Tc) of FeSe0.7Te0.3 thin films is strongly correlated with their a-axis lattice parameter. The highest Tc of over 19 K was observed for the film on bare CaF2 substrate, which is related to unexpectedly large in-plane compressive strain originating mostly from the thermal expansion mismatch between the FeSe0.7Te0.3 film and the substrate.
  • Item
    Control of Positive and Negative Magnetoresistance in Iron Oxide : Iron Nanocomposite Thin Films for Tunable Magnetoelectric Nanodevices
    (2020) Nichterwitz, Martin; Honnali, Shashank; Zehner, Jonas; Schneider, Sebastian; Pohl, Darius; Schiemenz, Sandra; Goennenwein, Sebastian T.B.; Nielsch, Kornelius; Leistner, Karin
    The perspective of energy-efficient and tunable functional magnetic nanostructures has triggered research efforts in the fields of voltage control of magnetism and spintronics. We investigate the magnetotransport properties of nanocomposite iron oxide/iron thin films with a nominal iron thickness of 5-50 nm and find a positive magnetoresistance at small thicknesses. The highest magnetoresistance was found for 30 nm Fe with +1.1% at 3 T. This anomalous behavior is attributed to the presence of Fe3O4-Fe nanocomposite regions due to grain boundary oxidation. At the Fe3O4/Fe interfaces, spin-polarized electrons in the magnetite can be scattered and reoriented. A crossover to negative magnetoresistance (-0.11%) is achieved at a larger thickness (>40 nm) when interface scattering effects become negligible as more current flows through the iron layer. Electrolytic gating of this system induces voltage-triggered redox reactions in the Fe3O4 regions and thereby enables voltage-tuning of the magnetoresistance with the locally oxidized regions as the active tuning elements. In the low-magnetic-field region (<1 T), a crossover from positive to negative magnetoresistance is achieved by a voltage change of only 1.72 V. At 3 T, a relative change of magnetoresistance about -45% during reduction was achieved for the 30 nm Fe sample. The present low-voltage approach signifies a step forward to practical and tunable room-temperature magnetoresistance-based nanodevices, which can boost the development of nanoscale and energy-efficient magnetic field sensors with high sensitivity, magnetic memories, and magnetoelectric devices in general. Copyright © 2020 American Chemical Society.
  • Item
    Transition to the quantum hall regime in InAs nanowire cross-junctions
    (Bristol : IOP Publ., 2019) Gooth, Johannes; Borg, Mattias; Schmid, Heinz; Bologna, Nicolas; Rossell, Marta D.; Wirths, Stephan; Moselund, Kirsten; Nielsch, Kornelius; Riel, Heike
    We present a low-temperature electrical transport study on four-terminal ballistic InAs nanowire cross-junctions in magnetic fields aligned perpendicular to the cross-plane. Two-terminal longitudinal conductance measurements between opposing contact terminals reveal typical 1D conductance quantization at zero magnetic field. As the magnetic field is applied, the 1D bands evolve into hybrid magneto-electric sub-levels that eventually transform into Landau levels for the widest nanowire devices investigated (width = 100 nm). Hall measurements in a four-terminal configuration on these devices show plateaus in the transverse Hall resistance at high magnetic fields that scale with (ve 2 /h) -1 . e is the elementary charge, h denotes Planck's constant and v is an integer that coincides with the Landau level index determined from the longitudinal conductance measurements. While the 1D conductance quantization in zero magnetic field is fragile against disorder at the NW surface, the plateaus in the Hall resistance at high fields remain robust as expected for a topologically protected Quantum Hall phase. © 2019 IOP Publishing Ltd.
  • Item
    Density-Dependence of Surface Transport in Tellurium-Enriched Nanograined Bulk Bi2Te3
    (Weinheim : Wiley-VCH, 2023) Izadi, Sepideh; Bhattacharya, Ahana; Salloum, Sarah; Han, Jeong Woo; Schnatmann, Lauritz; Wolff, Ulrike; Perez, Nicolas; Bendt, Georg; Ennen, Inga; Hütten, Andreas; Nielsch, Kornelius; Schulz, Stephan; Mittendorff, Martin; Schierning, Gabi
    Three-dimensional topological insulators (3D TI) exhibit conventional parabolic bulk bands and protected Dirac surface states. A thorough investigation of the different transport channels provided by the bulk and surface carriers using macroscopic samples may provide a path toward accessing superior surface transport properties. Bi2Te3 materials make promising 3D TI models; however, due to their complicated defect chemistry, these materials have a high number of charge carriers in the bulk that dominate the transport, even as nanograined structures. To partially control the bulk charge carrier density, herein the synthesis of Te-enriched Bi2Te3 nanoparticles is reported. The resulting nanoparticles are compacted into nanograined pellets of varying porosity to tailor the surface-to-volume ratio, thereby emphasizing the surface transport channels. The nanograined pellets are characterized by a combination of resistivity, Hall- and magneto-conductance measurements together with (THz) time-domain reflectivity measurements. Using the Hikami-Larkin-Nagaoka (HLN) model, a characteristic coherence length of ≈200 nm is reported that is considerably larger than the diameter of the nanograins. The different contributions from the bulk and surface carriers are disentangled by THz spectroscopy, thus emphasizing the dominant role of the surface carriers. The results strongly suggest that the surface transport carriers have overcome the hindrance imposed by nanoparticle boundaries.