Search Results

Now showing 1 - 4 of 4
  • Item
    Gradual pressure-induced enhancement of magnon excitations in CeCoSi
    (Woodbury, NY : Inst., 2020) Nikitin, S.E.; Franco, D.G.; Kwon, J.; Bewley, R.; Podlesnyak, A.; Hoser, A.; Koza, M.M.; Geibel, C.; Stockert, O.
    CeCoSi is an intermetallic antiferromagnet with a very unusual temperature-pressure phase diagram: At ambient pressure it orders below TN=8.8K, while application of hydrostatic pressure induces a new magnetically ordered phase with exceptionally high transition temperature of ∼40K at 1.5 GPa. We studied the magnetic properties and the pressure-induced magnetic phase of CeCoSi by means of elastic and inelastic neutron scattering (INS) and heat capacity measurements. At ambient pressure CeCoSi orders into a simple commensurate AFM structure with a reduced ordered moment of only mCe=0.37(6)μB. Specific heat and low-energy INS indicate a significant gap in the low-energy magnon excitation spectrum in the antiferromagnetic phase, with the CEF excitations located above 10 meV. Hydrostatic pressure gradually shifts the energy of the magnon band towards higher energies and the temperature dependence of the magnons measured at 1.5 GPa is consistent with the phase diagram. Moreover, the CEF excitations are also drastically modified under pressure. © 2020 authors.
  • Item
    Field-Angle-Resolved Magnetic Excitations as a Probe of Hidden-Order Symmetry in CeB6
    (College Park, Md. : APS, 2020) Portnichenko, P.Y.; Akbari, A.; Nikitin, S.E.; Cameron, A.S.; Dukhnenko, A.V.; Filipov, V.B.; Shitsevalova, N.Yu.; Čermák, P.; Radelytskyi, I.; Schneidewind, A.; Ollivier, J.; Podlesnyak, A.; Huesges, Z.; Xu, J.; Ivanov, A.; Sidis, Y.; Petit, S.; Mignot, J.-M.; Thalmeier, P.; Inosov, D.S.
    In contrast to magnetic order formed by electrons' dipolar moments, ordering phenomena associated with higher-order multipoles (quadrupoles, octupoles, etc.) are more difficult to characterize because of the limited choice of experimental probes that can distinguish different multipolar moments. The heavy-fermion compound CeB6 and its La-diluted alloys are among the best-studied realizations of the long-range-ordered multipolar phases, often referred to as "hidden order."Previously, the hidden order in phase II was identified as primary antiferroquadrupolar and field-induced octupolar order. Here, we present a combined experimental and theoretical investigation of collective excitations in phase II of CeB6. Inelastic neutron scattering (INS) in fields up to 16.5 T reveals a new high-energy mode above 14 T in addition to the low-energy magnetic excitations. The experimental dependence of their energy on the magnitude and angle of the applied magnetic field is compared to the results of a multipolar interaction model. The magnetic excitation spectrum in a rotating field is calculated within a localized approach using the pseudospin representation for the Γ8 states. We show that the rotating-field technique at fixed momentum can complement conventional INS measurements of the dispersion at a constant field and holds great promise for identifying the symmetry of multipolar order parameters and the details of intermultipolar interactions that stabilize hidden-order phases. © 2020 authors. Published by the American Physical Society.
  • Item
    Tomonaga–Luttinger liquid behavior and spinon confinement in YbAlO 3
    ([London] : Nature Publishing Group UK, 2019) Wu, L.S.; Nikitin, S.E.; Wang, Z.; Zhu, W.; Batista, C.D.; Tsvelik, A.M.; Samarakoon, A.M.; Tennant, D.A.; Brando, M.; Vasylechko, L.; Frontzek, M.; Savici, A.T.; Sala, G.; Ehlers, G.; Christianson, A.D.; Lumsden, M.D.; Podlesnyak, A.
    Low dimensional quantum magnets are interesting because of the emerging collective behavior arising from strong quantum fluctuations. The one-dimensional (1D) S = 1/2 Heisenberg antiferromagnet is a paradigmatic example, whose low-energy excitations, known as spinons, carry fractional spin S = 1/2. These fractional modes can be reconfined by the application of a staggered magnetic field. Even though considerable progress has been made in the theoretical understanding of such magnets, experimental realizations of this low-dimensional physics are relatively rare. This is particularly true for rare-earth-based magnets because of the large effective spin anisotropy induced by the combination of strong spin–orbit coupling and crystal field splitting. Here, we demonstrate that the rare-earth perovskite YbAlO3 provides a realization of a quantum spin S = 1/2 chain material exhibiting both quantum critical Tomonaga–Luttinger liquid behavior and spinon confinement–deconfinement transitions in different regions of magnetic field–temperature phase diagram.
  • Item
    Publisher Correction: Multiple fermion scattering in the weakly coupled spin-chain compound YbAlO3 (Nature Communications, (2021), 12, 1, (3599), 10.1038/s41467-021-23585-z)
    ([London] : Nature Publishing Group UK, 2021) Nikitin, S.E.; Nishimoto, S.; Fan, Y.; Wu, J.; Wu, L.S.; Sukhanov, A.S.; Brando, M.; Pavlovskii, N.S.; Xu, J.; Vasylechko, L.; Yu, R.; Podlesnyak, A.
    [No abstract available]