Search Results

Now showing 1 - 5 of 5
  • Item
    Intercalant-mediated Kitaev exchange in Ag3LiIr2O6
    (College Park, MD : APS, 2022) Yadav, Ravi; Reja, Sahinur; Ray, Rajyavardhan; van den Brink, Jeroen; Nishimoto, Satoshi; Yazyev, Oleg V.
    The recently synthesized Ag3LiIr2O6 has been proposed as a Kitaev magnet in proximity to the quantum spin liquid phase. We explore its microscopic Hamiltonian and magnetic ground state using many-body quantum chemistry methods and exact diagonalization techniques. Our calculations establish a dominant bond dependent ferromagnetic Kitaev exchange between Ir sites and find that the inclusion of Ag 4d orbitals in the configuration interaction calculations strikingly enhances the Kitaev exchange. Furthermore, using exact diagonalization of the nearest-neighbor fully anisotropic J−K−Γ Hamiltonian, we obtain the magnetic phase diagram as a function of further neighbor couplings. We find that the antiferromagnetic off-diagonal coupling stabilizes long range order, but the structure factor calculations suggest that the material is very close to the quantum spin liquid phase and the ordered state can easily collapse into a liquid by small perturbations such as structural distortion or bond disorder.
  • Item
    Unraveling the nature of spin excitations disentangled from charge contributions in a doped cuprate superconductor
    ([London] : Nature Publishing Group, 2022) Zhang, Wenliang; Agrapidis, Cliò Efthimia; Tseng, Yi; Asmara, Teguh Citra; Paris, Eugenio; Strocov, Vladimir N.; Giannini, Enrico; Nishimoto, Satoshi; Wohlfeld, Krzysztof; Schmitt, Thorsten
    The nature of the spin excitations in superconducting cuprates is a key question toward a unified understanding of the cuprate physics from long-range antiferromagnetism to superconductivity. The intense spin excitations up to the over-doped regime revealed by resonant inelastic X-ray scattering bring new insights as well as questions like how to understand their persistence or their relation to the collective excitations in ordered magnets (magnons). Here, we study the evolution of the spin excitations upon hole-doping the superconducting cuprate Bi2Sr2CaCu2O8+δ by disentangling the spin from the charge excitations in the experimental cross section. We compare our experimental results against density matrix renormalization group calculations for a t-J-like model on a square lattice. Our results unambiguously confirm the persistence of the spin excitations, which are closely connected to the persistence of short-range magnetic correlations up to high doping. This suggests that the spin excitations in hole-doped cuprates are related to magnons—albeit short-ranged.
  • Item
    Anomalous and anisotropic nonlinear susceptibility in the proximate Kitaev magnet α-RuCl3
    ([London] : Nature Publishing Group, 2021) Holleis, Ludwig; Prestigiacomo, Joseph C.; Fan, Zhijie; Nishimoto, Satoshi; Osofsky, Michael; Chern, Gia-Wei; van den Brink, Jeroen; Shivaram, B.S.
    The leading order nonlinear (NL) susceptibility, χ3, in a paramagnet is negative and diverges as T → 0. This divergence is destroyed when spins correlate and the NL response provides unique insights into magnetic order. Dimensionality, exchange interaction, and preponderance of quantum effects all imprint their signatures in the NL magnetic response. Here, we study the NL susceptibilities in the proximate Kitaev magnet α-RuCl3, which differs from the expected antiferromagnetic behavior. For T < Tc = 7.5 K and field B in the ab-plane, we obtain contrasting NL responses in low (<2 T) and high field regions. For low fields, the NL behavior is dominated by a quadratic response (positive χ2), which shows a rapid rise below Tc. This large χ2 > 0 implies a broken sublattice symmetry of magnetic order at low temperatures. Classical Monte Carlo (CMC) simulations in the standard K − H − Γ model secure such a quadratic B dependence of M, only for T ≈ Tc with χ2 being zero as T → 0. It is also zero for all temperatures in exact diagonalization calculations. On the other hand, we find an exclusive cubic term (χ3) that describes the high field NL behavior well. χ3 is large and positive both below and above Tc crossing zero only for T > 50 K. In contrast, for B ∥ c-axis, no separate low/high field behaviors are measured and only a much smaller χ3 is apparent.
  • Item
    NaRuO2: Kitaev-Heisenberg exchange in triangular-lattice setting
    ([London] : Nature Publishing Group, 2023) Bhattacharyya, Pritam; Bogdanov, Nikolay A.; Nishimoto, Satoshi; Wilson, Stephen D.; Hozoi, Liviu
    Kitaev exchange, a new paradigm in quantum magnetism research, occurs for 90° metal-ligand-metal links, t2g5 transition ions, and sizable spin-orbit coupling. It is being studied in honeycomb compounds but also on triangular lattices. While for the former it is known by now that the Kitaev intersite couplings are ferromagnetic, for the latter the situation is unclear. Here we pin down the exchange mechanisms and determine the effective coupling constants in the t2g5 triangular-lattice material NaRuO2, recently found to host a quantum spin liquid ground state. We show that, compared to honeycomb compounds, the characteristic triangular-lattice cation surroundings dramatically affect exchange paths and effective coupling parameters, changing the Kitaev interactions to antiferromagnetic. Quantum chemical analysis combined with subsequent effective spin model simulations provide perspective onto the nature of the experimentally observed quantum spin liquid—it seemingly implies fairly large antiferromagnetic second-neighbor isotropic exchange, and the atypical proximity to ferromagnetic order is related to ferromagnetic nearest-neighbor Heisenberg coupling.
  • Item
    Disorder effects in the Kitaev-Heisenberg model
    (College Park, MD : APS, 2023) Singhania, Ayushi; van den Brink, Jeroen; Nishimoto, Satoshi
    We study the interplay of disorder and Heisenberg interactions in the Kitaev model on a honeycomb lattice. The effect of disorder on the transition between Kitaev spin liquid and magnetic ordered states as well as the stability of magnetic ordering is investigated. Using Lanczos exact diagonalization we discuss the consequences of two types of disorder: (i) random-coupling disorder and (ii) singular-coupling disorder. They exhibit qualitatively similar effects in the pure Kitaev-Heisenberg model without long-range interactions. The range of spin-liquid phases is reduced and the transition to magnetic ordered phases becomes more crossoverlike. Furthermore, the long-range zigzag and stripy orderings in the clean system are replaced by their three domains with different ordering direction. Especially in the crossover range the coexistence of magnetically ordered and Kitaev spin-liquid domains is possible. With increasing the disorder strength the area of domains becomes smaller and the system goes into a spin-glass state. However, the disorder effect is different in magnetically ordered phases caused by long-range interactions. The stability of such magnetic ordering is diminished by singular-coupling disorder and, accordingly, the range of the spin-liquid regime is extended. This mechanism may be relevant to materials like α−RuCl3 and H3LiIr2O6 where the zigzag ground state is stabilized by weak long-range interactions. We also find that the flux gap closes at a critical disorder strength and vortices appears in the flux arrangement. Interestingly, the vortices tend to form kinds of commensurate ordering.