Search Results

Now showing 1 - 3 of 3
  • Item
    Mapping the dissociative ionization dynamics of molecular nitrogen with attosecond resolution
    (Bristol : IOP Publ., 2015) Klinker, M.; Trabattoni, A.; González-Vázquez, J.; Liu, C.; Sansone, G.; Linguerri, R.; Hochlaf, M..; Klei, J.; Vrakking, M.J.J.; Martin, F.; Nisoli, M.; Calegari, F.
    We wish to understand the processes underlying the ionization dynamics of N2 as experimentally induced and studied by recording the kinetic energy release (KER) in a XUV-pump/IR-probe setup. To this end a theoretical model was developed describing the ionization process using Dyson Orbitals and, subsequently, the dissociation process using a large set of diabatic potential energy surfaces (PES) on which to propagate. From said set of PES, a small subset is extracted allowing for the identification of one and two photon processes chiefly responsible for the experimentally observed features.
  • Item
    Ultrafast relaxation dynamics of highly-excited states in N2 molecules excited by femtosecond XUV pulses
    (Les Ulis : EDP Sciences, 2013) Lucchini, M.; Seung, Kim, K.; Calegari, F.; Kelkensberg, F.; Siu, W.K.; Sansone, G.; Vrakking, M.J.J.; Hochlaf, M.; Nisoli, M.
    We used velocity-map-imaging to measure electronic and nuclear dynamics in N2 molecules excited by a train of attosecond pulses. A time-to-space mapping of autoionization channel is demonstrated. It is found that the autoionization becomes energetically allowed when the two nuclei are still very close (~ 3 Å) and that it can be coherently manipulated by a strong femtosecond infrared pulse.
  • Item
    Attosecond electron spectroscopy using a novel interferometric pump-probe technique
    (College Park, Md. : APS, 2010) Mauritsson, J.; Remetter, T.; Swoboda, M.; Klünder, K.; L'Huillier, A.; Schafer, K.J.; Ghafur, O.; Kelkensberg, F.; Siu, W.; Johnsson, P.; Vrakking, M.J.J.; Znakovskaya, I.; Uphues, T.; Zherebtsov, S.; Kling, M.F.; Lépine, F.; Benedetti, E.; Ferrari, F.; Sansone, G.; Nisoli, M.
    We present an interferometric pump-probe technique for the characterization of attosecond electron wave packets (WPs) that uses a free WP as a reference to measure a bound WP. We demonstrate our method by exciting helium atoms using an attosecond pulse (AP) with a bandwidth centered near the ionization threshold, thus creating both a bound and a free WP simultaneously. After a variable delay, the bound WP is ionized by a few-cycle infrared laser precisely synchronized to the original AP. By measuring the delay-dependent photoelectron spectrum we obtain an interferogram that contains both quantum beats as well as multipath interference. Analysis of the interferogram allows us to determine the bound WP components with a spectral resolution much better than the inverse of the AP duration. © 2010 The American Physical Society.