Search Results

Now showing 1 - 10 of 14
  • Item
    Exploring the atmospheric chemistry of nitrous acid (HONO) at a rural site in Southern China
    (München : European Geopyhsical Union, 2012) Li, X.; Brauers, T.; Häseler, R.; Bohn, B.; Fuchs, H.; Hofzumahaus, A.; Holland, F.; Lou, S.; Lu, K.D.; Rohrer, F.; Hu, M.; Zeng, L.M.; Zhang, Y.H.; Garland, R.M.; Su, H.; Nowak, A.; Wiedensohler, A.; Takegawa, N.; Shao, M.; Wahner, A.
    We performed measurements of nitrous acid (HONO) during the PRIDE-PRD2006 campaign in the Pearl River Delta region 60 km north of Guangzhou, China, for 4 weeks in June 2006. HONO was measured by a LOPAP in-situ instrument which was setup in one of the campaign supersites along with a variety of instruments measuring hydroxyl radicals, trace gases, aerosols, and meteorological parameters. Maximum diurnal HONO mixing ratios of 1–5 ppb were observed during the nights. We found that the nighttime build-up of HONO can be attributed to the heterogeneous NO2 to HONO conversion on ground surfaces and the OH + NO reaction. In addition to elevated nighttime mixing ratios, measured noontime values of ≈200 ppt indicate the existence of a daytime source higher than the OH + NO→HONO reaction. Using the simultaneously recorded OH, NO, and HONO photolysis frequency, a daytime additional source strength of HONO (PM) was calculated to be 0.77 ppb h−1 on average. This value compares well to previous measurements in other environments. Our analysis of PM provides evidence that the photolysis of HNO3 adsorbed on ground surfaces contributes to the HONO formation.
  • Item
    A fast and easy-to-implement inversion algorithm for mobility particle size spectrometers considering particle number size distribution information outside of the detection range
    (München : European Geopyhsical Union, 2014) Pfeifer, S.; Birmili, W.; Schladitz, A.; Müller, T.; Nowak, A.; Wiedensohler, A.
    Multiple-charge inversion is an essential procedure to convert the raw mobility distributions recorded by mobility particle size spectrometers, such as the DMPS or SMPS (differential or scanning mobility particle sizers), into true particle number size distributions. In this work, we present a fast and easy-to-implement multiple-charge inversion algorithm with sufficient precision for atmospheric conditions, but extended functionality. The algorithm can incorporate size distribution information from sensors that measure beyond the upper sizing limit of the mobility spectrometer, such as an aerodynamic particle sizer (APS) or an optical particle counter (OPC). This feature can considerably improve the multiple-charge inversion result in the upper size range of the mobility spectrometer, for example, when substantial numbers of coarse particles are present. The program also yields a continuous size distribution from both sensors as an output. The algorithm is able to calculate the propagation of measurement errors, such as those based on counting statistics, into on the final particle number size distribution. As an additional aspect, the algorithm can perform all inversion steps under the assumption of non-spherical particle shape, including constant or size-dependent shape factors.
  • Item
    Mobility particle size spectrometers: Harmonization of technical standards and data structure to facilitate high quality long-term observations of atmospheric particle number size distributions
    (München : European Geopyhsical Union, 2012) Wiedensohler, A.; Birmili, W.; Nowak, A.; Sonntag, A.; Weinhold, K.; Merkel, M.; Wehner, B.; Tuch, T.; Pfeifer, S.; Fiebig, M.; Fjäraa, A.M.; Asmi, E.; Sellegri, K.; Depuy, R.; Venzac, H.; Villani, P.; Laj, P.; Aalto, P.; Ogren, J.A.; Swietlick, E.; Williams, P.; Roldin, P.; Quincey, P.; Hüglin, C.; Fierz-Schmidhauser, R.; Gysel, M.; Weingartner, E.; Riccobono, F.; Santos, S.; Grüning, C.; Faloon, K.; Beddows, D.; Harrison, R.; Monahan, C.; Jennings, S.G.; O'Dowd, C.D.; Marinoni, A.; Horn, H.-G.; Keck, L.; Jiang, J.; Scheckman, J.; McMurry, P.H.; Deng, Z.; Zhao, C.S.; Moerman, M.; Henzing, B.; de Leeuw, G.; Löschau, G.; Bastian, S.
    Mobility particle size spectrometers often referred to as DMPS (Differential Mobility Particle Sizers) or SMPS (Scanning Mobility Particle Sizers) have found a wide range of applications in atmospheric aerosol research. However, comparability of measurements conducted world-wide is hampered by lack of generally accepted technical standards and guidelines with respect to the instrumental set-up, measurement mode, data evaluation as well as quality control. Technical standards were developed for a minimum requirement of mobility size spectrometry to perform long-term atmospheric aerosol measurements. Technical recommendations include continuous monitoring of flow rates, temperature, pressure, and relative humidity for the sheath and sample air in the differential mobility analyzer. We compared commercial and custom-made inversion routines to calculate the particle number size distributions from the measured electrical mobility distribution. All inversion routines are comparable within few per cent uncertainty for a given set of raw data. Furthermore, this work summarizes the results from several instrument intercomparison workshops conducted within the European infrastructure project EUSAAR (European Supersites for Atmospheric Aerosol Research) and ACTRIS (Aerosols, Clouds, and Trace gases Research InfraStructure Network) to determine present uncertainties especially of custom-built mobility particle size spectrometers. Under controlled laboratory conditions, the particle number size distributions from 20 to 200 nm determined by mobility particle size spectrometers of different design are within an uncertainty range of around ±10% after correcting internal particle losses, while below and above this size range the discrepancies increased. For particles larger than 200 nm, the uncertainty range increased to 30%, which could not be explained. The network reference mobility spectrometers with identical design agreed within ±4% in the peak particle number concentration when all settings were done carefully. The consistency of these reference instruments to the total particle number concentration was demonstrated to be less than 5%. Additionally, a new data structure for particle number size distributions was introduced to store and disseminate the data at EMEP (European Monitoring and Evaluation Program). This structure contains three levels: raw data, processed data, and final particle size distributions. Importantly, we recommend reporting raw measurements including all relevant instrument parameters as well as a complete documentation on all data transformation and correction steps. These technical and data structure standards aim to enhance the quality of long-term size distribution measurements, their comparability between different networks and sites, and their transparency and traceability back to raw data.
  • Item
    Characterization and intercomparison of aerosol absorption photometers: Result of two intercomparison workshops
    (München : European Geopyhsical Union, 2011) Müller, T.; Henzing, J.S.; de Leeuw, G.; Wiedensohler, A.; Alastuey, A.; Angelov, H.; Bizjak, M.; Collaud Coen, M.; Engström, J.E.; Gruening, C.; Hillamo, R.; Hoffer, A.; Imre, K.; Ivanow, P.; Jennings, G.; Sun, J.Y.; Kalivitis, N.; Karlsson, H.; Komppula, M.; Laj, P.; Li, S.-M.; Lunder, C.; Marinoni, A.; Martins dos Santos, S.; Moerman, M.; Nowak, A.; Ogren, J.A.; Petzold, A.; Pichon, J.M.; Rodriquez, S.; Sharma, S.; Sheridan, P.J.; Teinilä, K.; Tuch, T.; Viana, M.; Virkkula, A.; Weingartner, E.; Wilhelm, R.; Wang, Y.Q.
    Absorption photometers for real time application have been available since the 1980s, but the use of filter-based instruments to derive information on aerosol properties (absorption coefficient and black carbon, BC) is still a matter of debate. Several workshops have been conducted to investigate the performance of individual instruments over the intervening years. Two workshops with large sets of aerosol absorption photometers were conducted in 2005 and 2007. The data from these instruments were corrected using existing methods before further analysis. The inter-comparison shows a large variation between the responses to absorbing aerosol particles for different types of instruments. The unit to unit variability between instruments can be up to 30% for Particle Soot Absorption Photometers (PSAPs) and Aethalometers. Multi Angle Absorption Photometers (MAAPs) showed a variability of less than 5%. Reasons for the high variability were identified to be variations in sample flow and spot size. It was observed that different flow rates influence system performance with respect to response to absorption and instrumental noise. Measurements with non absorbing particles showed that the current corrections of a cross sensitivity to particle scattering are not sufficient. Remaining cross sensitivities were found to be a function of the total particle load on the filter. The large variation between the response to absorbing aerosol particles for different types of instruments indicates that current correction functions for absorption photometers are not adequate.
  • Item
    Cloud condensation nuclei in polluted air and biomass burning smoke near the mega-city Guangzhou, China – Part 2: Size-resolved aerosol chemical composition, diurnal cycles, and externally mixed weakly CCN-active soot particles
    (München : European Geopyhsical Union, 2011) Rose, D.; Gunthe, S.S.; Su, H.; Garland, R.M.; Yang, H.; Berghof, M.; Cheng, Y.F.; Wehner, B.; Achtert, P.; Nowak, A.; Wiedensohler, A.; Takegawa, N.; Kondo, Y.; Hu, M.; Zhang, Y.; Andreae, M.O.; Pöschl, U.
    Size-resolved chemical composition, mixing state, and cloud condensation nucleus (CCN) activity of aerosol particles in polluted mega-city air and biomass burning smoke were measured during the PRIDE-PRD2006 campaign near Guangzhou, China, using an aerosol mass spectrometer (AMS), a volatility tandem differential mobility analyzer (VTDMA), and a continuous-flow CCN counter (DMT-CCNC). The size-dependence and temporal variations of the effective average hygroscopicity parameter for CCN-active particles (κa) could be parameterized as a function of organic and inorganic mass fractions (forg, finorg) determined by the AMS: κa,p=κorg·forg + κinorg·finorg. The characteristic κ values of organic and inorganic components were similar to those observed in other continental regions of the world: κorg≈0.1 and κinorg≈0.6. The campaign average κa values increased with particle size from ~0.25 at ~50 nm to ~0.4 at ~200 nm, while forg decreased with particle size. At ~50 nm, forg was on average 60% and increased to almost 100% during a biomass burning event. The VTDMA results and complementary aerosol optical data suggest that the large fractions of CCN-inactive particles observed at low supersaturations (up to 60% at S≤0.27%) were externally mixed weakly CCN-active soot particles with low volatility (diameter reduction <5% at 300 °C) and effective hygroscopicity parameters around κLV≈0.01. A proxy for the effective average hygroscopicity of the total ensemble of CCN-active particles including weakly CCN-active particles (κt) could be parameterized as a function of κa,p and the number fraction of low volatility particles determined by VTDMA (φLV): κt,p=κa,p−φLV·(κa,p−κLV). Based on κ values derived from AMS and VTDMA data, the observed CCN number concentrations (NCCN,S≈102–104 cm−3 at S = 0.068–0.47%) could be efficiently predicted from the measured particle number size distribution. The mean relative deviations between observed and predicted CCN concentrations were ~10% when using κt,p, and they increased to ~20% when using only κa,p. The mean relative deviations were not higher (~20%) when using an approximate continental average value of κ≈0.3, although the constant κ value cannot account for the observed temporal variations in particle composition and mixing state (diurnal cycles and biomass burning events). Overall, the results confirm that on a global and climate modeling scale an average value of κ≈0.3 can be used for approximate predictions of CCN number concentrations in continental boundary layer air when aerosol size distribution data are available without information about chemical composition. Bulk or size-resolved data on aerosol chemical composition enable improved CCN predictions resolving regional and temporal variations, but the composition data need to be highly accurate and complemented by information about particle mixing state to achieve high precision (relative deviations <20%).
  • Item
    Variation of particle number size distributions and chemical compositions at the urban and downwind regional sites in the Pearl River Delta during summertime pollution episodes
    (München : European Geopyhsical Union, 2010) Yue, D.L.; Hu, M.; Wu, Z.J.; Guo, S.; Wen, M.T.; Nowak, A.; Wehner, B.; Wiedensohler, A.; Takegawa, N.; Kondo, Y.; Wang, X.S.; Li, Y.P.; Zeng, L.M.; Zhang, Y.H.
    In order to characterize the features of particulate pollution in the Pearl River Delta (PRD) in the summer, continuous measurements of particle number size distributions and chemical compositions were simultaneously performed at Guangzhou urban site (GZ) and Back-garden downwind regional site (BG) in July 2006. Particle number concentration from 20 nm to 10 μm at BG was (1.7±0.8)×104 cm−3, about 40% lower than that at GZ, (2.9±1.1)×104 cm−3. The total particle volume concentration at BG was 94±34 μm3 cm−3, similar to that at GZ, 96±43 μm3 cm−3. More 20–100 nm particles, significantly affected by the traffic emissions, were observed at GZ, while 100–660 nm particle number concentrations were similar at both sites as they are more regional. PM2.5 values were similar at GZ (69±43 μg m−3) and BG (69±58 μg m−3) with R2 of 0.71 for the daily average PM2.5 at these two sites, indicating the fine particulate pollution in the PRD region to be regional. Two kinds of pollution episodes, the accumulation pollution episode and the regional transport pollution episode, were observed. Fine particles over 100 nm dominated both number and volume concentrations of total particles during the late periods of these pollution episodes. Accumulation and secondary transformation are the main reasons for the nighttime accumulation pollution episode. SO42−, NO3− accounted for about 60% in 100–660 nm particle mass and PM2.5 increase. When south or southeast wind prevailed in the PRD region, regional transport of pollutants took place. Regional transport contributed about 30% to fine particulate pollution at BG during a regional transport case. Secondary transformation played an important role during regional transport, causing higher increase rates of secondary ions in PM1.0 than other species and shifting the peaks of sulfate and ammonium mass size distributions to larger sizes. SO42−, NO3−, and NH4+ accounted for about 70% and 40% of PM1.0 and PM2.5, respectively.
  • Item
    First long-term study of particle number size distributions and new particle formation events of regional aerosol in the North China Plain
    (München : European Geopyhsical Union, 2011) Shen, X.J.; Sun, J.Y.; Zhang, Y.M.; Wehner, B.; Nowak, A.; Tuch, T.; Zhang, X.C.; Wang, T.T.; Zhou, H.G.; Zhang, X.L.; Dong, F.; Birmili, W.; Wiedensohler, A.
    Atmospheric particle number size distributions (size range 0.003–10 μm) were measured between March 2008 and August 2009 at Shangdianzi (SDZ), a rural research station in the North China Plain. These measurements were made in an attempt to better characterize the tropospheric background aerosol in Northern China. The mean particle number concentrations of the total particle, as well as the nucleation, Aitken, accumulation and coarse mode were determined to be 1.2 ± 0.9 × 104, 3.6 ± 7.9 × 103, 4.4 ± 3.4 × 103, 3.5 ± 2.8 × 103 and 2 ± 3 cm−3, respectively. A general finding was that the particle number concentration was higher during spring compared to the other seasons. The air mass origin had an important effect on the particle number concentration and new particle formation events. Air masses from northwest (i.e. inner Asia) favored the new particle formation events, while air masses from southeast showed the highest particle mass concentration. Significant diurnal variations in particle number were observed, which could be linked to new particle formation events, i.e. gas-to-particle conversion. During particle formation events, the number concentration of the nucleation mode rose up to maximum value of 104 cm−3. New particle formation events were observed on 36% of the effective measurement days. The formation rate ranged from 0.7 to 72.7 cm−3 s−1, with a mean value of 8.0 cm−3 s−1. The value of the nucleation mode growth rate was in the range of 0.3–14.5 nm h−1, with a mean value of 4.3 nm h−1. It was an essential observation that on many occasions the nucleation mode was able to grow into the size of cloud condensation nuclei (CCN) within a matter of several hours. Furthermore, the new particle formation was regularly followed by a measurable increase in particle mass concentration and extinction coefficient, indicative of a high abundance of condensable vapors in the atmosphere under study.
  • Item
    Hygroscopic properties of aerosol particles at high relative humidity and their diurnal variations in the North China Plain
    (München : European Geopyhsical Union, 2011) Liu, P.F.; Zhao, C.S.; Göbel, T.; Hallbauer, E.; Nowak, A.; Ran, L.; Xu, W.Y.; Deng, Z.Z.; Ma, N.; Mildenberger, K.; Henning, S.; Stratmann, F.; Wiedensohler, A.
    The hygroscopic properties of submicron aerosol particles were determined at a suburban site (Wuqing) in the North China Plain among a cluster of cities during the period 17 July to 12 August, 2009. A High Humidity Tandem Differential Mobility Analyser (HH-TDMA) instrument was applied to measure the hygroscopic growth factor (GF) at 90%, 95% and 98.5% relative humidity (RH) for particles with dry diameters between 50 and 250 nm. The probability distribution of GF (GF-PDF) averaged over the period shows a distinct bimodal pattern, namely, a dominant more-hygroscopic (MH) group and a smaller nearly-hydrophobic (NH) group. The MH group particles were highly hygroscopic, and their GF was relatively constant during the period with average values of 1.54 ± 0.02, 1.81 ± 0.04 and 2.45 ± 0.07 at 90%, 95% and 98.5% RH (D0 = 100 nm), respectively. The NH group particles grew very slightly when exposed to high RH, with GF values of 1.08 ± 0.02, 1.13 ± 0.06 and 1.24 ± 0.13 respectively at 90%, 95% and 98.5% RH (D0 = 100 nm). The hygroscopic growth behaviours at different RHs were well represented by a single-parameter Köhler model. Thus, the calculation of GF as a function of RH and dry diameter could be facilitated by an empirical parameterization of κ as function of dry diameter. A strong diurnal pattern in number fraction of different hygroscopic groups was observed. The average number fraction of NH particles during the day was about 8%, while during the nighttime fractions up to 20% were reached. Correspondingly, the state of mixing in terms of water uptake varied significantly during a day. Simulations using a particle-resolved aerosol box model (PartMC-MOSAIC) suggest that the diurnal variations of aerosol hygroscopicity and mixing state were mainly caused by the evolution of the atmospheric mixing layer. The shallow nocturnal boundary layer during the night facilitated the accumulation of freshly emitted carbonaceous particles (mainly hydrophobic) near the surface while in the morning turbulence entrained the more aged and more hygroscopic particles from aloft and diluted the NH particles near the surface resulting in a decrease in the fraction of NH particles.
  • Item
    Size-resolved measurement of the mixing state of soot in the megacity Beijing, China: Diurnal cycle, aging and parameterization
    (München : European Geopyhsical Union, 2012) Cheng, Y.F.; Su, H.; Rose, D.; Gunthe, S.S.; Berghof, M.; Wehner, B.; Achtert, P.; Nowak, A.; Takegawa, N.; Kondo, Y.; Shiraiwa, M.; Gong, Y.G.; Shao, M.; Hu, M.; Zhu, T.; Zhang, Y.H.; Carmichael, G.R.; Wiedensohler, A.; Andreae, M.O.; Pöschl, U.
    Soot particles are the most efficient light absorbing aerosol species in the atmosphere, playing an important role as a driver of global warming. Their climate effects strongly depend on their mixing state, which significantly changes their light absorbing capability and cloud condensation nuclei (CCN) activity. Therefore, knowledge about the mixing state of soot and its aging mechanism becomes an important topic in the atmospheric sciences. The size-resolved (30–320 nm diameter) mixing state of soot particles in polluted megacity air was measured at a suburban site (Yufa) during the CAREBeijing 2006 campaign in Beijing, using a volatility tandem differential mobility analyzer (VTDMA). Particles in this size range with non-volatile residuals at 300 °C were considered to be soot particles. On average, the number fraction of internally mixed soot in total soot particles (Fin), decreased from 0.80 to 0.57 when initial Dp increased from 30 to 320 nm. Further analysis reveals that: (1) Fin was well correlated with the aerosol hygroscopic mixing state measured by a CCN counter. More externally mixed soot particles were observed when particles showed more heterogeneous features with regard to hygroscopicity. (2) Fin had pronounced diurnal cycles. For particles in the accumulation mode (Dp at 100–320 nm), largest Fin were observed at noon time, with "apparent" turnover rates (kex → in) up to 7.8% h−1. (3) Fin was subject to competing effects of both aging and emissions. While aging increases Fin by converting externally mixed soot particles into internally mixed ones, emissions tend to reduce Fin by emitting more fresh and externally mixed soot particles. Similar competing effects were also found with air mass age indicators. (4) Under the estimated emission intensities, actual turnover rates of soot (kex → in) up to 20% h−1 were derived, which showed a pronounced diurnal cycle peaking around noon time. This result confirms that (soot) particles are undergoing fast aging/coating with the existing high levels of condensable vapors in the megacity Beijing. (5) Diurnal cycles of Fin were different between Aitken and accumulation mode particles, which could be explained by the faster growth of smaller Aitken mode particles into larger size bins. To improve the Fin prediction in regional/global models, we suggest parameterizing Fin by an air mass aging indicator, i.e., Fin = a + bx, where a and b are empirical coefficients determined from observations, and x is the value of an air mass age indicator. At the Yufa site in the North China Plain, fitted coefficients (a, b) were determined as (0.57, 0.21), (0.47, 0.21), and (0.52, 0.0088) for x (indicators) as [NOz]/[NOy], [E]/[X] ([ethylbenzene]/[m,p-xylene]) and ([IM] + [OM])/[EC] ([inorganic + organic matter]/[elemental carbon]), respectively. Such a parameterization consumes little additional computing time, but yields a more realistic description of Fin compared with the simple treatment of soot mixing state in regional/global models.
  • Item
    Cloud condensation nuclei in polluted air and biomass burning smoke near the mega-city Guangzhou, China – Part 1: Size-resolved measurements and implications for the modeling of aerosol particle hygroscopicity and CCN activity
    (München : European Geopyhsical Union, 2010) Rose, D.; Nowak, A.; Achtert, P.; Wiedensohler, A.; Hu, M.; Shao, M.; Zhang, Y.; Andreae, M.O.
    Atmospheric aerosol particles serving as Cloud Condensation Nuclei (CCN) are key elements of the hydrological cycle and climate. We measured and characterized CCN in polluted air and biomass burning smoke during the PRIDE-PRD2006 campaign from 1–30 July 2006 at a rural site ~60 km northwest of the mega-city Guangzhou in southeastern China. CCN efficiency spectra (activated fraction vs. dry particle diameter; 20–290 nm) were recorded at water vapor supersaturations (S) in the range of 0.068% to 1.27%. The corresponding effective hygroscopicity parameters describing the influence of particle composition on CCN activity were in the range of κ≈0.1–0.5. The campaign average value of κ=0.3 equals the average value of κ for other continental locations. During a strong local biomass burning event, the average value of κ dropped to 0.2, which can be considered as characteristic for freshly emitted smoke from the burning of agricultural waste. At low S (≤0.27%), the maximum activated fraction remained generally well below one, indicating substantial portions of externally mixed CCN-inactive particles with much lower hygroscopicity – most likely soot particles (up to ~60% at ~250 nm). The mean CCN number concentrations (NCCN,S) ranged from 1000 cm−3 at S=0.068% to 16 000 cm−3 at S=1.27%, which is about two orders of magnitude higher than in pristine air. Nevertheless, the ratios between CCN concentration and total aerosol particle concentration (integral CCN efficiencies) were similar to the ratios observed in pristine continental air (~6% to ~85% at S=0.068% to 1.27%). Based on the measurement data, we have tested different model approaches for the approximation/prediction of NCCN,S. Depending on S and on the model approach, the relative deviations between observed and predicted NCCN,S ranged from a few percent to several hundred percent. The largest deviations occurred at low S with a simple power law. With a Köhler model using variable κ values obtained from individual CCN efficiency spectra, the relative deviations were on average less than ~10% and hardly exceeded 20%, confirming the applicability of the κ-Köhler model approach for efficient description of the CCN activity of atmospheric aerosols. Note, however, that different types of κ-parameters must be distinguished for external mixtures of CCN-active and -inactive aerosol particles (κa, κt, κcut). Using a constant average hygroscopicity parameter (κ=0.3) and variable size distributions as measured, the deviations between observed and predicted CCN concentrations were on average less than 20%. In contrast, model calculations using variable hygroscopicity parameters as measured and constant size distributions led to much higher deviations: ~70% for the campaign average size distribution, ~80% for a generic rural size distribution, and ~140% for a generic urban size distribution. These findings confirm earlier studies suggesting that aerosol particle number and size are the major predictors for the variability of the CCN concentration in continental boundary layer air, followed by particle composition and hygroscopicity as relatively minor modulators. Depending on the required and applicable level of detail, the information and parameterizations presented in this study should enable efficient description of the CCN activity of atmospheric aerosols in detailed process models as well as in large-scale atmospheric and climate models.