Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

The Early Upper Paleolithic Site Crvenka-At, Serbia–The First Aurignacian Lowland Occupation Site in the Southern Carpathian Basin

2021, Nett, Janina J., Chu, Wei, Fischer, Peter, Hambach, Ulrich, Klasen, Nicole, Zeeden, Christian, Obreht, Igor, Obrocki, Lea, Pötter, Stephan, Gavrilov, Milivoj B., Vött, Andreas, Mihailović, Dušan, Marković, Slobodan B., Lehmkuhl, Frank

The Carpathian Basin is a key region for understanding modern human expansion into western Eurasia during the Late Pleistocene because of numerous early hominid fossil find spots. However, the corresponding archeological record remains less understood due to a paucity of well dated, contextualized sites. To help rectify this, we excavated and sampled Crvenka-At (Serbia), one of the largest Upper Paleolithic sites in the region to obtain radiometric ages for the archeological artifacts and evaluate their depositional context and subsequent site formation processes. Our results confirm that this locality represents a multiple-occupation Aurignacian site that dates to 36.4 ± 2.8 ka based on modeling of luminescence ages. Electrical resistivity tomography measurements indicate that the site formed on a sandy-gravelly fill terrace covered by overbank deposits. Complex grain size distributions further suggest site formation in contrasting depositional environments typically occurring alongside fluvial channels, at lakeshores, in alluvial fan or delta settings. The site is thus the closest (ca. 50 km) known Aurignacian site to the earliest undisputed modern human remains in Europe at the Peştera cu oase and some intervals of the occupation may therefore have been contemporaneous with them. This suggests that modern humans, during their initial settlement of Europe, exploited a wider range of topographic and ecological settings than previously posited. Our findings indicate that lowland areas of the Carpathian Basin are an important part of understanding the early settlement patterns of modern humans in Europe.

Loading...
Thumbnail Image
Item

Smoothed millennial-scale palaeoclimatic reference data as unconventional comparison targets: Application to European loess records

2020, Zeeden, Christian, Obreht, Igor, Veres, Daniel, Kaboth-Bahr, Stefanie, Hošek, Jan, Marković, Slobodan B., Bösken, Janina, Lehmkuhl, Frank, Rolf, Christian, Hambach, Ulrich

Millennial-scale palaeoclimate variability has been documented in various terrestrial and marine palaeoclimate proxy records throughout the Northern Hemisphere for the last glacial cycle. Its clear expression and rapid shifts between different states of climate (Greenland Interstadials and Stadials) represents a correlation tool beyond the resolution of e.g. luminescence dating, especially relevant for terrestrial deposits. Usually, comparison of terrestrial proxy datasets and the Greenland ice cores indicates a complex expression of millennial-scale climate variability as recorded in terrestrial geoarchives including loess. Loess is the most widespread terrestrial geoarchive of the Quaternary and especially widespread over Eurasia. However, loess often records a smoothed representation of millennial-scale variability without all fidelity when compared to the Greenland data, this being a relevant limiting feature in integrating loess with other palaeoclimate records. To better understand the loess proxy-response to millennial-scale climate variability, we simulate a proxy signal smoothing by natural processes through application of low-pass filters of δ18O data from Greenland, a high-resolution palaeoclimate reference record, alongside speleothem isotope records from the Black Sea-Mediterranean region. We show that low-pass filters represent rather simple models for better constraining the expression of millennial-scale climate variability in low sedimentation environments, and in sediments where proxy-response signals are most likely affected by natural smoothing (by e.g. bioturbation). Interestingly, smoothed datasets from Greenland and the Black Sea-Mediterranean region are most similar in the last ~15 ka and between ~50–30 ka. Between ~30–15 ka, roughly corresponding to the Last Glacial Maximum and the deglaciation, the records show dissimilarities, challenging the construction of robust correlative time-scales in this age range. From our analysis it becomes apparent that patterns of palaeoclimate signals in loess-palaeosol sequences often might be better explained by smoothed Greenland reference data than the original high-resolution Greenland dataset, or other reference data. This opens the possibility to better assess the temporal resolution and palaeoclimate potential of loess-palaeosol sequences in recording supra-regional climate patterns, as well as to securely integrate loess with other chronologically better-resolved palaeoclimate records. © 2020, The Author(s).