Search Results

Now showing 1 - 2 of 2
  • Item
    Responses of fish and invertebrates to floods and droughts in Europe
    (Hoboken, NJ : Wiley, 2016) Piniewsk, M.; Prudhomme, C.; Acreman, M.C.; Tylec, L.; Oglęcki, P.; Okruszko, T.
    Floods and droughts, two opposite natural components of streamflow regimes, are known to regulate population size and species diversity. Quantifiable measures of these disturbances and their subsequent ecological responses are needed to synthesize the knowledge on flow–ecosystem relationships. This study for the first time combines the systematic review approach used to collect evidence on the ecological responses to floods and droughts in Europe with the statistical methods used to quantify the extreme events severity. Out of 854 publications identified in literature search, 54 papers were retained after screening and eligibility checks, providing in total 82 case studies with unique extreme event—ecological response associations for which data were extracted. In this way, a database with metadata of case studies that can be explored with respect to various factors was constructed. This study pinpointed the research gaps where little evidence could be synthesized, for example, drought event studies and fish studies. It was demonstrated that in many cases the studied metrics (abundance, density, richness, and diversity) showed statistically significant decreases after or during the event occurrence. The responses in invertebrate density and richness were in general more negative than the corresponding responses in fish. Biota resistance to floods was found to be lower than the resistance to droughts. The severity of extreme events was not found to be an important factor influencing ecological metrics, although this analysis was often hampered by insufficient number of case studies. Conceivably, other factors could mask any existing relationships between disturbance severity and biotic response.
  • Item
    Effect of climate change on hydrology, sediment and nutrient losses in two lowland catchments in Poland
    (Basel : MDPI AG, 2017) Marcinkowski, P.; Piniewski, M.; Kardel, I.; Szcześniak, M.; Benestad, R.; Srinivasan, R.; Ignar, S.; Okruszko, T.
    Future climate change is projected to have significant impact on water resources availability and quality in many parts of the world. The objective of this paper is to assess the effect of projected climate change on water quantity and quality in two lowland catchments (the Upper Narew and the Barycz) in Poland in two future periods (near future: 2021-2050, and far future: 2071-2100). The hydrological model SWAT was driven by climate forcing data from an ensemble of nine bias-corrected General Circulation Models-Regional Climate Models (GCM-RCM) runs based on the Coordinated Downscaling Experiment-European Domain (EURO-CORDEX). Hydrological response to climate warming and wetter conditions (particularly in winter and spring) in both catchments includes: lower snowmelt, increased percolation and baseflow and higher runoff. Seasonal differences in the response between catchments can be explained by their properties (e.g., different thermal conditions and soil permeability). Projections suggest only moderate increases in sediment loss, occurring mainly in summer and winter. A sharper increase is projected in both catchments for TN losses, especially in the Barycz catchment characterized by a more intensive agriculture. The signal of change in annual TP losses is blurred by climate model uncertainty in the Barycz catchment, whereas a weak and uncertain increase is projected in the Upper Narew catchment.