Search Results

Now showing 1 - 7 of 7
Loading...
Thumbnail Image
Item

Directly Anodized Sulfur-Doped TiO2 Nanotubes as Improved Anodes for Li-ion Batteries

2020, Sabaghi, Davood, Madian, Mahmoud, Omar, Ahmad, Oswald, Steffen, Uhlemann, Margitta, Maghrebi, Morteza, Baniadam, Majid, Mikhailova, Daria

TiO2 represents one of the promising anode materials for lithium ion batteries due to its high thermal and chemical stability, relatively high theoretical specific capacity and low cost. However, the electrochemical performance, particularly for mesoporous TiO2, is limited and must be further developed. Elemental doping is a viable route to enhance rate capability and discharge capacity of TiO2 anodes in Li-ion batteries. Usually, elemental doping requires elevated temperatures, which represents a challenge, particularly for sulfur as a dopant. In this work, S-doped TiO2 nanotubes were successfully synthesized in situ during the electrochemical anodization of a titanium substrate at room temperature. The electrochemical anodization bath represented an ethylene glycol-based solution containing NH4F along with Na2S2O5 as the sulfur source. The S-doped TiO2 anodes demonstrated a higher areal discharge capacity of 95 µAh·cm−2 at a current rate of 100 µA·cm−2 after 100 cycles, as compared to the pure TiO2 nanotubes (60 µAh·cm−2). S-TiO2 also exhibited a significantly improved rate capability up to 2500 µA·cm−2 as compared to undoped TiO2. The improved electrochemical performance, as compared to pure TiO2 nanotubes, is attributed to a lower impedance in S-doped TiO2 nanotubes (STNTs). Thus, the direct S-doping during the anodization process is a promising and cost-effective route towards improved TiO2 anodes for Li-ion batteries.

Loading...
Thumbnail Image
Item

A Facile Chemical Method Enabling Uniform Zn Deposition for Improved Aqueous Zn-Ion Batteries

2021, Liu, Congcong, Lu, Qiongqiong, Omar, Ahmad, Mikhailova, Daria

Rechargeable aqueous Zn-ion batteries (ZIBs) have gained great attention due to their high safety and the natural abundance of Zn. Unfortunately, the Zn metal anode suffers from dendrite growth due to nonuniform deposition during the plating/stripping process, leading to a sudden failure of the batteries. Herein, Cu coated Zn (Cu–Zn) was prepared by a facile pretreatment method using CuSO4 aqueous solution. The Cu coating transformed into an alloy interfacial layer with a high affinity for Zn, which acted as a nucleation site to guide the uniform Zn nucleation and plating. As a result, Cu–Zn demonstrated a cycling life of up to 1600 h in the symmetric cells and endowed a stable cycling performance with a capacity of 207 mAh g−1 even after 1000 cycles in the full cells coupled with a V2O5-based cathode. This work provides a simple and effective strategy to enable uniform Zn deposition for improved ZIBs.

Loading...
Thumbnail Image
Item

Freestanding MXene‐based macroforms for electrochemical energy storage applications

2023, Lu, Qiongqiong, Liu, Congcong, Zhao, Yirong, Pan, Wengao, Xie, Kun, Yue, Pengfei, Zhang, Guoshang, Omar, Ahmad, Liu, Lixiang, Yu, Minghao, Mikhailova, Daria

Freestanding MXene-based macroforms have gained significant attention as versatile components in electrochemical energy storage applications owing to their interconnected conductive network, strong mechanical strength, and customizable surface chemistries derived from MXene nanosheets. This comprehensive review article encompasses key aspects related to the synthesis of MXene nanosheets, strategies for structure design and surface medication, surface modification, and the diverse fabrication methods employed to create freestanding MXene-based macroform architectures. The review also delves into the recent advancements in utilizing freestanding MXene macroforms for electrochemical energy storage applications, offering a detailed discussion on the significant progress achieved thus far. Notably, the correlation between the macroform's structural attributes and its performance characteristics is thoroughly explored, shedding light on the critical factors influencing efficiency and durability. Despite the remarkable development, the review also highlights the existing challenges and presents future perspectives for freestanding MXene-based macroforms in the realms of high-performance energy storage devices. By addressing these challenges and leveraging emerging opportunities, the potential of freestanding MXene-based macroforms can be harnessed to enable groundbreaking advancements in the field of energy storage.

Loading...
Thumbnail Image
Item

High-Entropy Metal-Organic Frameworks for Highly Reversible Sodium Storage

2021, Ma, Yanjiao, Ma, Yuan, Dreyer, Sören Lukas, Wang, Qingsong, Wang, Kai, Goonetilleke, Damian, Omar, Ahmad, Mikhailova, Daria, Hahn, Horst, Breitung, Ben, Brezesinski, Torsten

Prussian blue analogues (PBAs) are reported to be efficient sodium storage materials because of the unique advantages of their metal-organic framework structure. However, the issues of low specific capacity and poor reversibility, caused by phase transitions during charge/discharge cycling, have thus far limited the applicability of these materials. Herein, a new approach is presented to substantially improve the electrochemical properties of PBAs by introducing high entropy into the crystal structure. To achieve this, five different metal species are introduced, sharing the same nitrogen-coordinated site, thereby increasing the configurational entropy of the system beyond 1.5R. By careful selection of the elements, high-entropy PBA (HE-PBA) presents a quasi-zero-strain reaction mechanism, resulting in increased cycling stability and rate capability. The key to such improvement lies in the high entropy and associated effects as well as the presence of several active redox centers. The gassing behavior of PBAs is also reported. Evolution of dimeric cyanogen due to oxidation of the cyanide ligands is detected, which can be attributed to the structural degradation of HE-PBA during battery operation. By optimizing the electrochemical window, a Coulombic efficiency of nearly 100% is retained after cycling for more than 3000 cycles.

Loading...
Thumbnail Image
Item

Polypyrrole Wrapped V2O5 Nanowires Composite for Advanced Aqueous Zinc-Ion Batteries

2020, Qin, Xinghua, Wang, Xinyu, Sun, Juncai, Lu, Qiongqiong, Omar, Ahmad, Mikhailova, Daria

Aqueous zinc-ion batteries (ZIBs) have obtained increasing attention owing to the high safety, material abundance, and environmental benignity. However, the development of cathode materials with high capacity and stable cyclability is still a challenge. Herein, the polypyrrole (PPy)-wrapped V2O5 nanowire (V2O5/PPy) composite was synthesized by a surface-initiated polymerization strategy, ascribing to the redox reaction between V2O5 and pyrrole. The introduction of PPy on the surface of V2O5 nanowires not only enhanced the electronic conductivity of the active materials but also reduced the V2O5 dissolution. As a result, the V2O5/PPy composite cathode exhibits a high specific capacity of 466 mAh g–1 at 0.1 A g–1 and a superior cycling stability with 95% capacity retention after 1000 cycles at a high current density of 5 A g–1. The superior electrochemical performance is ascribed to the large ratio of capacitive contribution (92% at 1 mV s–1) and a fast Zn2+ diffusion rate. This work presents a simple method for fabricating V2O5/PPy composite toward advanced ZIBs.

Loading...
Thumbnail Image
Item

P2-type layered high-entropy oxides as sodium-ion cathode materials

2022, Wang, Junbo, Dreyer, Sören L, Wang, Kai, Ding, Ziming, Diemant, Thomas, Karkera, Guruprakash, Ma, Yanjiao, Sarkar, Abhishek, Zhou, Bei, Gorbunov, Mikhail V, Omar, Ahmad, Mikhailova, Daria, Presser, Volker, Fichtner, Maximilian, Hahn, Horst, Brezesinski, Torsten, Breitung, Ben, Wang, Qingsong

P2-type layered oxides with the general Na-deficient composition NaxTMO2 (x < 1, TM: transition metal) are a promising class of cathode materials for sodium-ion batteries. The open Na+ transport pathways present in the structure lead to low diffusion barriers and enable high charge/discharge rates. However, a phase transition from P2 to O2 structure occurring above 4.2 V and metal dissolution at low potentials upon discharge results in rapid capacity degradation. In this work, we demonstrate the positive effect of configurational entropy on the stability of the crystal structure during battery operation. Three different compositions of layered P2-type oxides were synthesized by solid-state chemistry, Na0.67(Mn0.55Ni0.21Co0.24)O2, Na0.67(Mn0.45Ni0.18Co0.24Ti0.1Mg0.03)O2 and Na0.67(Mn0.45Ni0.18Co0.18Ti0.1Mg0.03Al0.04Fe0.02)O2 with low, medium and high configurational entropy, respectively. The high-entropy cathode material shows lower structural transformation and Mn dissolution upon cycling in a wide voltage range from 1.5 to 4.6 V. Advanced operando techniques and post-mortem analysis were used to probe the underlying reaction mechanism thoroughly. Overall, the high-entropy strategy is a promising route for improving the electrochemical performance of P2 layered oxide cathodes for advanced sodium-ion battery applications.

Loading...
Thumbnail Image
Item

Comparative Study of Onion-like Carbons Prepared from Different Synthesis Routes towards Li-Ion Capacitor Application

2022, Permana, Antonius Dimas Chandra, Ding, Ling, Gonzalez-Martinez, Ignacio Guillermo, Hantusch, Martin, Nielsch, Kornelius, Mikhailova, Daria, Omar, Ahmad

Li-ion capacitors (LIC) have emerged as a promising hybrid energy storage system in response to increasing energy demands. However, to achieve excellent LIC performance at high rates, along with cycling stability, an alternative anode to graphite is needed. Porous high-surface-area carbons, such as onion-like carbons (OLCs), have been recently found to hold high potential as high-rate-capable LIC anodes. However, a systematic understanding of their synthesis route and morphology is lacking. In this study, OLCs prepared from self-made metal organic frameworks (MOFs) Fe-BTC and Fe-MIL100 by a simple pyrolysis method were compared to OLCs obtained via high-temperature annealing of nanodiamonds. The LICs with OLCs produced from Fe-BTC achieved a maximum energy density of 243 Wh kg−1 and a power density of 20,149 W kg−1. Furthermore, excellent capacitance retention of 78% after 10,000 cycles was demonstrated. LICs with MOF-derived OLCs surpassed the energy and power density of LICs with nanodiamond-derived OLCs. We determined the impact of the MOF precursor structure and morphology on the resulting OLC properties, as well as on the electrochemical performance. Thus, MOF-derived OLCs offer significant potential toward high-performance anode material for LICs, enabling control over structure and morphology, as well as easy scalability for industrial implementation.