Search Results

Now showing 1 - 2 of 2
  • Item
    Partially coherent twisted states in arrays of coupled phase oscillators
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2013) Omel'chenko, Oleh; Wolfrum, Matthias; Laing, Carlo
    We consider a one-dimensional array of phase oscillators with non-local coupling and a Lorenztian distribution of natural frequencies. The primary objects of interest are partially coherent states that are uniformly twisted in space. To analyze these we take the continuum limit, perform an Ott/Antonsen reduction, integrate over the natural frequencies and study the resulting spatio-temporal system on an unbounded domain. We show that these twisted states and their stability can be calculated explicitly. We find that stable twisted states with different wave numbers appear for increasing coupling strength in the wellknown Eckhaus scenario. Simulations of finite arrays of oscillators show good agreement with results of the analysis of the infinite system.
  • Item
    Regular and irregular patterns of self-localized excitation in arrays of coupled phase oscillators
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2015) Wolfrum, Matthias; Omel'chenko, Oleh; Sieber, Jan
    We study a system of phase oscillators with non-local coupling in a ring that supports self-organized patterns of coherence and incoherence, called chimera states. Introducing a global feedback loop, connecting the phase lag to the order parameter, we can observe chimera states also for systems with a small number of oscillators. Numerical simulations show a huge variety of regular and irregular patterns composed of localized phase slipping events of single oscillators. Using methods of classical finite dimensional chaos and bifurcation theory, we can identify the emergence of chaotic chimera states as a result of transitions to chaos via period doubling cascades, torus breakup, and intermittency. We can explain the observed phenomena by a mechanism of self-modulated excitability in a discrete excitable medium.