Search Results

Now showing 1 - 2 of 2
  • Item
    Generation and characterization of isolated attosecond pulses for coincidence spectroscopy at 100 kHz repetition rate
    (Bristol : IOP Publ., 2020) Witting, T.; Furch, F.; Osolodkov, M.; Schell, F.; Menoni, C.; Schulz, C.P.; Vrakking, M.J.J.
    An attosecond pump-probe beamline with 100 kHz repetition rate for coincidence experiments has been developed. It is based on non-collinear optical parametric chirped pulse ampli-cation and delivers 100 µJ sub-4 fs to an high-harmonic generation source. Details on the generation and characterization of isolated attosecond pulses will be presented. © 2019 Published under licence by IOP Publishing Ltd.
  • Item
    High power, high repetition rate laser-based sources for attosecond science
    (Bristol : IOP Publishing, 2022) Furch, F.J.; Witting, T.; Osolodkov, M.; Schell, F.; Schulz, C.P.; Vrakking, M.J.
    Within the last two decades attosecond science has been established as a novel research field providing insights into the ultrafast electron dynamics that follows a photoexcitation or photoionization process. Enabled by technological advances in ultrafast laser amplifiers, attosecond science has been in turn, a powerful engine driving the development of novel sources of intense ultrafast laser pulses. This article focuses on the development of high repetition rate laser-based sources delivering high energy pulses with a duration of only a few optical cycles, for applications in attosecond science. In particular, a high power, high repetition rate optical parametric chirped pulse amplification system is described, which was developed to drive an attosecond pump-probe beamline targeting photoionization experiments with electron-ion coincidence detection at high acquisition rates.