Search Results

Now showing 1 - 2 of 2
  • Item
    Effects of Promoter on Structural and Surface Properties of Zirconium Oxide-Based Catalyst Materials
    (Basel : MDPI AG, 2020) Borovinskaya, E.S.; Oswald, S.; Reschetilowski, W.
    Ternary mixed oxide systems CuO/ZnO/ZrO2 and CuO/NiO/ZrO2 were synthesized by one-pot synthesis for a better understanding of the synthesis-property relationships of zirconium oxide-based catalyst materials. The prepared mixed oxide samples were analysed by a broad range of characterisation methods (XRD, N2-physisorption, Temperature-Programmed Ammonia Desorption (TPAD), and XPS) to examine the structural and surface properties, as well as to identify the location of the potential catalytically active sites. By XPS analysis, it could be shown that a progressive enrichment of the surface composition with copper takes place by changing from ZnO to NiO as a promoter. Thus, by addition of the second component, not only electronic but also the geometric properties of active sites, i.e., copper species distribution within the catalyst surface, can be affected in a desired way.
  • Item
    Amorphous Li-Al-based compounds: A novel approach for designing high performance electrode materials for Li-ion batteries
    (Basel : MDPI AG, 2013) Thoss, F.; Giebeler, L.; Thomas, J.; Oswald, S.; Potzger, K.; Reuther, H.; Ehrenberg, H.; Eckert, J.
    A new amorphous compound with the initial atomic composition Al43Li43Y6Ni8 applied as electrode material for Li-ion batteries is investigated. Unlike other amorphous compounds so-far investigated as anode materials, it already contains Li as a base element in the uncycled state. The amorphous compound powder is prepared by high energy ball milling of a master alloy. It shows a strongly enhanced specific capacity in contrast to amorphous alloys without Li in the initial state. Therewith, by enabling a reversible (de)lithiation of metallic electrodes without the phase transition caused volume changes it offers the possibility of much increased specific capacities than conventional graphite anodes. According to the charge rate (C-rate), the specific capacity is reversible over 20 cycles at minimum in contrast to conventional crystalline intermetallic phases failing by volume changes. The delithiation process occurs quasi-continuously over a voltage range of nearly 4 V, while the lithiation is mainly observed between 0.1 V and 1.5 V. That way, the electrode is applicable for different potential needs. The electrode stays amorphous during cycling, thus avoiding volume changes. The cycling performance is further enhanced by a significant amount of Fe introduced as wear debris from the milling tools, which acts as a promoting element.