Search Results

Now showing 1 - 2 of 2
  • Item
    On-Chip Micro Temperature Controllers Based on Freestanding Thermoelectric Nano Films for Low-Power Electronics
    (Berlin ; Heidelberg [u.a.] : Springer, 2024) Jin, Qun; Guo, Tianxiao; Pérez, Nicolás; Yang, Nianjun; Jiang, Xin; Nielsch, Kornelius; Reith, Heiko
    Dense and flat freestanding Bi2Te3-based thermoelectric nano films were successfully fabricated by sputtering technology using a newly developed nano graphene oxide membrane as a substrate. On-chip micro temperature controllers were integrated using conventional micro-electromechanical system technology, to achieve energy-efficient temperature control for low-power electronics. The tunable equivalent thermal resistance enables an ultrahigh temperature control capability of 100 K mW−1 and an ultra-fast cooling rate exceeding 2000 K s−1, as well as excellent reliability of up to 1 million cycles.
  • Item
    Grain Boundary Phases in NbFeSb Half-Heusler Alloys: A New Avenue to Tune Transport Properties of Thermoelectric Materials
    (Weinheim : Wiley-VCH, 2023) Bueno Villoro, Ruben; Zavanelli, Duncan; Jung, Chanwon; Mattlat, Dominique Alexander; Hatami Naderloo, Raana; Pérez, Nicolás; Nielsch, Kornelius; Snyder, Gerald Jeffrey; Scheu, Christina; He, Ran; Zhang, Siyuan
    Many thermoelectric materials benefit from complex microstructures. Grain boundaries (GBs) in nanocrystalline thermoelectrics cause desirable reduction in the thermal conductivity by scattering phonons, but often lead to unwanted loss in the electrical conductivity by scattering charge carriers. Therefore, modifying GBs to suppress their electrical resistivity plays a pivotal role in the enhancement of thermoelectric performance, zT. In this work, different characteristics of GB phases in Ti-doped NbFeSb half-Heusler compounds are revealed using a combination of scanning transmission electron microscopy and atom probe tomography. The GB phases adopt a hexagonal close-packed lattice, which is structurally distinct from the half-Heusler grains. Enrichment of Fe is found at GBs in Nb0.95Ti0.05FeSb, but accumulation of Ti dopants at GBs in Nb0.80Ti0.20FeSb, correlating to the bad and good electrical conductivity of the respective GBs. Such resistive to conductive GB phase transition opens up new design space to decouple the intertwined electronic and phononic transport in thermoelectric materials.