Search Results

Now showing 1 - 4 of 4
Loading...
Thumbnail Image
Item

Thermal annealing to influence the vapor sensing behavior of co-continuous poly(lactic acid)/polystyrene/multiwalled carbon nanotube composites

2020, Li, Yilong, Pionteck, Jürgen, Pötschke, Petra, Voit, Brigitte

With the main purpose of being used as vapor leakage detector, the volatile organic compound (VOC) vapor sensing properties of conductive polymer blend composites were studied. Poly(lactic acid)/polystyrene/multi-walled carbon nanotube (PLA/PS/MWCNT) based conductive polymer composites (CPCs) in which the polymer components exhibit different interactions with the vapors, were prepared by melt mixing. CPCs with a blend composition of 50/50 wt% resulted in the finest co-continuous structure and selective MWCNT localization in PLA. Therefore, these composites were selected for sensor tests. Thermal annealing was applied aiming to maintain the blend structure but improving the sensing reversibility of CPC sensors towards high vapor concentrations. Different sensing protocols were applied using acetone (good solvent for PS and PLA) and cyclohexane (good solvent for PS but poor solvent for PLA) vapors. Increasing acetone vapor concentration resulted in increased relative resistance change (Rrel) of CPCs. Saturated cyclohexane vapor resulted in lower response than nearly saturated acetone vapor. The thermal annealing at 150 °C did not change the blend morphology but increased the PLA crystallinity, making the CPC sensors more resistant to vapor stimulation, resulting in lower Rrel but better reversibility after vapor exposure.

Loading...
Thumbnail Image
Item

MWCNT induced negative real permittivity in a copolyester of Bisphenol-A with terephthalic and isophthalic acids

2020, Özdemir, Zeynep Güven, Daşdan, Dolunay Şakar, Kavak, Pelin, Pionteck, Jürgen, Pötschke, Petra, Voit, Brigitte, SüngüMısırlıoğlu, Banu

In the present study, the negative real permittivity behavior of a copolyester of bisphenol-A with terephthalic acid and isophthalic acid (PAr) containing 1.5 to 7.5 wt% multi-walled carbon nanotubes (MWCNTs) have been investigated in detail. The structural and morphological analysis of the melt-mixed composites was performed by Fourier transform infrared spectroscopy using attenuated total reflection (FTIR-ATR), atomic force microscopy (AFM), X-ray diffraction (XRD), and light microscopy. The influences of the MWCNT filler on the AC impedance, complex permittivity, and AC conductivity of the PAr polymer matrix were investigated at different operating temperatures varied between 296 K and 373 K. The transition from a negative to positive real permittivity was observed at different crossover frequencies depending on the MWCNT content of the composites whereas pure PAr showed positive values at all frequencies. The negative real permittivity characteristic of the composites was discussed in the context of Drude model. © 2020 The Author(s). Published by IOP Publishing Ltd.

Loading...
Thumbnail Image
Item

Influence of Polyvinylpyrrolidone on Thermoelectric Properties of Melt-Mixed Polymer/Carbon Nanotube Composites

2023, Krause, Beate, Imhoff, Sarah, Voit, Brigitte, Pötschke, Petra

For thermoelectric applications, both p- and n-type semi-conductive materials are combined. In melt-mixed composites based on thermoplastic polymers and carbon nanotubes, usually the p-type with a positive Seebeck coefficient (S) is present. One way to produce composites with a negative Seebeck coefficient is to add further additives. In the present study, for the first time, the combination of single-walled carbon nanotubes (SWCNTs) with polyvinylpyrrolidone (PVP) in melt-mixed composites is investigated. Polycarbonate (PC), poly(butylene terephthalate) (PBT), and poly(ether ether ketone) (PEEK) filled with SWCNTs and PVP were melt-mixed in small scales and thermoelectric properties of compression moulded plates were studied. It could be shown that a switch in the S-value from positive to negative values was only possible for PC composites. The addition of 5 wt% PVP shifted the S-value from 37.8 µV/K to −31.5 µV/K (2 wt% SWCNT). For PBT as a matrix, a decrease in the Seebeck coefficient from 59.4 µV/K to 8.0 µV/K (8 wt% PVP, 2 wt% SWCNT) could be found. In PEEK-based composites, the S-value increased slightly with the PVP content from 48.0 µV/K up to 54.3 µV/K (3 wt% PVP, 1 wt% SWCNT). In addition, the long-term stability of the composites was studied. Unfortunately, the achieved properties were not stable over a storage time of 6 or 18 months. Thus, in summary, PVP is not suitable for producing long-term stable, melt-mixed n-type SWCNT composites.

Loading...
Thumbnail Image
Item

Aerogels based on reduced graphene oxide/cellulose composites: Preparation and vapour sensing abilities

2020, Chen, Yian, Pötschke, Petra, Pionteck, Jürgen, Voit, Brigitte, Qi, Haisong

This paper reports on the preparation of cellulose/reduced graphene oxide (rGO) aerogels for use as chemical vapour sensors. Cellulose/rGO composite aerogels were prepared by dissolving cellulose and dispersing graphene oxide (GO) in aqueous NaOH/urea solution, followed by an in-situ reduction of GO to reduced GO (rGO) and lyophilisation. The vapour sensing properties of cellulose/rGO composite aerogels were investigated by measuring the change in electrical resistance during cyclic exposure to vapours with varying solubility parameters, namely water, methanol, ethanol, acetone, toluene, tetrahydrofuran (THF), and chloroform. The increase in resistance of aerogels on exposure to vapours is in the range of 7 to 40% with methanol giving the highest response. The sensing signal increases almost linearly with the vapour concentration, as tested for methanol. The resistance changes are caused by the destruction of the conductive filler network due to a combination of swelling of the cellulose matrix and adsorption of vapour molecules on the filler surfaces. This combined mechanism leads to an increased sensing response with increasing conductive filler content. Overall, fast reaction, good reproducibility, high sensitivity, and good differentiation ability between different vapours characterize the detection behaviour of the aerogels. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.