Search Results

Now showing 1 - 2 of 2
  • Item
    Melt mixed SWCNT-polypropylene composites with very low electrical percolation
    (Oxford : Elsevier Science, 2016) Krause, Beate; Pötschke, Petra; Ilin, Evgeniy; Predtechenskiy, Mikhail
    Singlewalled carbon nanotube material of the type TUBALL™ (OCSiAl) was used to prepare composites with polypropylene by melt mixing using a conical twin screw micro-compounder. The compression moulded composites showed electrical percolation between 0.075 and 0.1 wt % and achieved volume resistivity values lower than 1 kOhm-cm already at 0.8 wt % loading. Light microscopy and scanning electron microscopy revealed good distribution and dispersion into small diameter bundles as well as retained high nanotube length. In connection with the very low percolation threshold this indicates that the SWCNT material shows an exceptionally good dispersibility which may be due to relatively high nanotube diameters with a mean value of 1.6 nm. In tensile tests already 0.1 wt % nanotube additions resulted in slight increase in Young's modulus and maximum stress. Tuball™ SWCNT material seems to be very promising for conductivity enhancement.
  • Item
    Melt-mixed PP/MWCNT composites: Influence of CNT incorporation strategy and matrix viscosity on filler dispersion and electrical resistivity
    (Basel : MDPI, 2019) Pötschke, Petra; Mothes, Fanny; Krause, Beate; Voit, Brigitte
    Small-scale melt mixing was performed for composites based on polypropylene (PP) and 0.5–7.5 wt % multiwalled carbon nanotubes (MWCNT) to determine if masterbatch (MB) dilution is a more effective form of nanofiller dispersion than direct nanotube incorporation. The methods were compared using composites of five different PP types, each filled with 2 wt % MWCNTs. After the determination of the specific mechanical energy (SME) input in the MB dilution process, the direct-incorporation mixing time was adjusted to achieve comparable SME values. Interestingly, the electrical resistivity of MB-prepared samples with 2 wt % MWCNTs was higher than that of those prepared using direct incorporation—despite their better dispersion—suggesting more pronounced MWCNT shortening in the two-step procedure. In summary, this study on PP suggests that the masterbatch approach is suitable for the dispersion of MWCNTs and holds advantages in nanotube dispersion, albeit at the cost of slightly increased electrical resistivity.