Search Results

Now showing 1 - 10 of 26
  • Item
    Lightweight polymer-carbon composite current collector for lithium-ion batteries
    (Basel : MDPI, 2020) Fritsch, Marco; Coeler, Matthias; Kunz, Karina; Krause, Beate; Marcinkowski, Peter; Pötschke, Petra; Wolter, Mareike; Michaelis, Alexander
    A hermetic dense polymer-carbon composite-based current collector foil (PCCF) for lithium-ion battery applications was developed and evaluated in comparison to state-of-the-art aluminum (Al) foil collector. Water-processed LiNi0.5Mn1.5O4 (LMNO) cathode and Li4Ti5O12 (LTO) anode coatings with the integration of a thin carbon primer at the interface to the collector were prepared. Despite the fact that the laboratory manufactured PCCF shows a much higher film thickness of 55 µm compared to Al foil of 19 µm, the electrode resistance was measured to be by a factor of 5 lower compared to the Al collector, which was attributed to the low contact resistance between PCCF, carbon primer and electrode microstructure. The PCCF-C-primer collector shows a sufficient voltage stability up to 5 V vs. Li/Li+ and a negligible Li-intercalation loss into the carbon primer. Electrochemical cell tests demonstrate the applicability of the developed PCCF for LMNO and LTO electrodes, with no disadvantage compared to state-of-the-art Al collector. Due to a 50% lower material density, the lightweight and hermetic dense PCCF polymer collector offers the possibility to significantly decrease the mass loading of the collector in battery cells, which can be of special interest for bipolar battery architectures. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    High-Performance, Lightweight, and Flexible Thermoplastic Polyurethane Nanocomposites with Zn2+-Substituted CoFe2O4 Nanoparticles and Reduced Graphene Oxide as Shielding Materials against Electromagnetic Pollution
    (Washington, DC : ACS Publications, 2021-10-11) Anju; Yadav, Raghvendra Singh; Pötschke, Petra; Pionteck, Jürgen; Krause, Beate; Kuřitka, Ivo; Vilcakova, Jarmila; Skoda, David; Urbánek, Pavel; Machovsky, Michal; Masař, Milan; Urbánek, Michal; Jurca, Marek; Kalina, Lukas; Havlica, Jaromir
    The development of flexible, lightweight, and thin high-performance electromagnetic interference shielding materials is urgently needed for the protection of humans, the environment, and electronic devices against electromagnetic radiation. To achieve this, the spinel ferrite nanoparticles CoFe2O4 (CZ1), Co0.67Zn0.33Fe2O4 (CZ2), and Co0.33Zn0.67Fe2O4 (CZ3) were prepared by the sonochemical synthesis method. Further, these prepared spinel ferrite nanoparticles and reduced graphene oxide (rGO) were embedded in a thermoplastic polyurethane (TPU) matrix. The maximum electromagnetic interference (EMI) total shielding effectiveness (SET) values in the frequency range 8.2-12.4 GHz of these nanocomposites with a thickness of only 0.8 mm were 48.3, 61.8, and 67.8 dB for CZ1-rGO-TPU, CZ2-rGO-TPU, and CZ3-rGO-TPU, respectively. The high-performance electromagnetic interference shielding characteristics of the CZ3-rGO-TPU nanocomposite stem from dipole and interfacial polarization, conduction loss, multiple scattering, eddy current effect, natural resonance, high attenuation constant, and impedance matching. The optimized CZ3-rGO-TPU nanocomposite can be a potential candidate as a lightweight, flexible, thin, and high-performance electromagnetic interference shielding material.
  • Item
    Graphite modified epoxy-based adhesive for joining of aluminium and PP/graphite composites
    (New York, NY [u.a.] : Taylor & Francis, 2020) Rzeczkowski, P.; Pötschke, Petra; Fischer, M.; Kühnert, I.; Krause, Beate
    A graphite-modified adhesive was developed in order to simultaneously enhance the thermal conductivity and the strength of an adhesive joint. The thermal conductivity through the joint was investigated by using highly filled PP/graphite composite substrates, which were joined with an epoxy adhesive of different layer thicknesses. Similar measurements were carried out with a constant adhesive layer thickness, whilst applying an epoxy adhesive modified with expanded graphite (EG) (6, 10, and 20 wt%). By reducing the adhesive layer thickness or modifying the adhesive with conductive fillers, a significant increase of the thermal conductivity through the joint was achieved. The examination of the mechanical properties of the modified adhesives was carried out by tensile tests (adhesive only), lap-shear tests, and fracture energy tests (mode 1) with aluminium substrates. Modification of the adhesive with EG led to an increase of the tensile lap-shear strength and the adhesive fracture energy (mode 1) of the joint. In addition, burst pressure tests were performed to determine the strength of the joint in a complex component. The strength of the joint increased with the graphite content in the PP substrate and in the epoxy adhesive.
  • Item
    Experimental and computational analysis of thermoelectric modules based on melt-mixed polypropylene composites
    (Amsterdam : Elsevier, 2023) Doraghi, Qusay; Żabnieńska-Góra, Alina; Norman, Les; Krause, Beate; Pötschke, Petra; Jouhara, Hussam
    Researchers are constantly looking for new materials that exploit the Seebeck phenomenon to convert heat into electrical energy using thermoelectric generators (TEGs). New lead-free thermoelectric materials are being investigated as part of the EU project InComEss, with one of the anticipated uses being converting wasted heat into electric energy. Such research aims to reduce the production costs as well as the environmental impact of current TEG modules which mostly employ bismuth for their construction. The use of polymers that, despite lower efficiency, achieve increasingly higher values of electrical conductivity and Seebeck coefficients at a low heat transfer coefficient is increasingly discussed in the literature. This article presents two thermoelectric generator (TEG) models based on data previously described in the literature. Two types of designs are presented: consisting of 4- and 49-leg pairs of p- and n-type composites based on polypropylene melt-mixed with single-walled carbon nanotubes. The models being developed using COMSOL Multiphysics software and validated based on measurements carried out in the laboratory. Based on the results of the analysis, conductive polymer composites employing insulating matrices can be considered as a promising material of the future for TEG modules.
  • Item
    Messanlage zur Untersuchung des Seebeck-Effektes in Polymermaterialien
    (Berlin : De Gruyter, 2020) Jenschke, Wolfgang; Ullrich, Mathias; Krause, Beate; Pötschke, Petra
    The thermoelectric effect named after the physicist Thomas Johann Seebeck has been investigated sufficiently well for all technically relevant metals and has been used for a long time, among other things, for temperature measurement by means of thermocouples. Less well known and researched is the Seebeck effect in polymer materials, which are gaining increasing influence in the sensor industry today. This article describes a measuring system designed specifically to study the Seebeck effect in polymeric samples with the aim of developing tailored polymers for sensory engineering applications using the Seebeck effect. The special requirement of the measuring system is the realization of constant accurate temperature sources.
  • Item
    Thermal annealing to influence the vapor sensing behavior of co-continuous poly(lactic acid)/polystyrene/multiwalled carbon nanotube composites
    (Amsterdam [u.a.] : Elsevier Science, 2020) Li, Yilong; Pionteck, Jürgen; Pötschke, Petra; Voit, Brigitte
    With the main purpose of being used as vapor leakage detector, the volatile organic compound (VOC) vapor sensing properties of conductive polymer blend composites were studied. Poly(lactic acid)/polystyrene/multi-walled carbon nanotube (PLA/PS/MWCNT) based conductive polymer composites (CPCs) in which the polymer components exhibit different interactions with the vapors, were prepared by melt mixing. CPCs with a blend composition of 50/50 wt% resulted in the finest co-continuous structure and selective MWCNT localization in PLA. Therefore, these composites were selected for sensor tests. Thermal annealing was applied aiming to maintain the blend structure but improving the sensing reversibility of CPC sensors towards high vapor concentrations. Different sensing protocols were applied using acetone (good solvent for PS and PLA) and cyclohexane (good solvent for PS but poor solvent for PLA) vapors. Increasing acetone vapor concentration resulted in increased relative resistance change (Rrel) of CPCs. Saturated cyclohexane vapor resulted in lower response than nearly saturated acetone vapor. The thermal annealing at 150 °C did not change the blend morphology but increased the PLA crystallinity, making the CPC sensors more resistant to vapor stimulation, resulting in lower Rrel but better reversibility after vapor exposure.
  • Item
    MWCNT induced negative real permittivity in a copolyester of Bisphenol-A with terephthalic and isophthalic acids
    (Bristol : IOP Publ., 2020) Özdemir, Zeynep Güven; Daşdan, Dolunay Şakar; Kavak, Pelin; Pionteck, Jürgen; Pötschke, Petra; Voit, Brigitte; SüngüMısırlıoğlu, Banu
    In the present study, the negative real permittivity behavior of a copolyester of bisphenol-A with terephthalic acid and isophthalic acid (PAr) containing 1.5 to 7.5 wt% multi-walled carbon nanotubes (MWCNTs) have been investigated in detail. The structural and morphological analysis of the melt-mixed composites was performed by Fourier transform infrared spectroscopy using attenuated total reflection (FTIR-ATR), atomic force microscopy (AFM), X-ray diffraction (XRD), and light microscopy. The influences of the MWCNT filler on the AC impedance, complex permittivity, and AC conductivity of the PAr polymer matrix were investigated at different operating temperatures varied between 296 K and 373 K. The transition from a negative to positive real permittivity was observed at different crossover frequencies depending on the MWCNT content of the composites whereas pure PAr showed positive values at all frequencies. The negative real permittivity characteristic of the composites was discussed in the context of Drude model. © 2020 The Author(s). Published by IOP Publishing Ltd.
  • Item
    The Localization Behavior of Different CNTs in PC/SAN Blends Containing a Reactive Component
    (Basel : MDPI, 2021-3-1) Gültner, Marén; Boldt, Regine; Formanek, Petr; Fischer, Dieter; Simon, Frank; Pötschke, Petra
    Co-continuous blend systems of polycarbonate (PC), poly(styrene-co-acrylonitrile) (SAN), commercial non-functionalized multi-walled carbon nanotubes (MWCNTs) or various types of commercial and laboratory functionalized single-walled carbon nanotubes (SWCNTs), and a reactive component (RC, N-phenylmaleimide styrene maleic anhydride copolymer) were melt compounded in one step in a microcompounder. The blend system is immiscible, while the RC is miscible with SAN and contains maleic anhydride groups that have the potential to reactively couple with functional groups on the surface of the nanotubes. The influence of the RC on the localization of MWCNTs and SWCNTs (0.5 wt.%) was investigated by transmission electron microscopy (TEM) and energy-filtered TEM. In PC/SAN blends without RC, MWCNTs are localized in the PC component. In contrast, in PC/SAN-RC, the MWCNTs localize in the SAN-RC component, depending on the RC concentration. By adjusting the MWCNT/RC ratio, the localization of the MWCNTs can be tuned. The SWCNTs behave differently compared to the MWCNTs in PC/SAN-RC blends and their localization occurs either only in the PC or in both blend components, depending on the type of the SWCNTs. CNT defect concentration and surface functionalities seem to be responsible for the localization differences.
  • Item
    Bio-inspired deposition of electrochemically exfoliated graphene layers for electrical resistance heating applications
    (Bristol : IOP Publishing, 2020-12-4) Utech, Toni; Pötschke, Petra; Simon, Frank; Janke, Andreas; Kettner, Hannes; Paiva, Maria; Zimmerer, Cordelia
    Electrochemically exfoliated graphene (eeG) layers possess a variety of potential applications, e.g. as susceptor material for contactless induction heating in dynamic electro-magnetic fields, and as flexible and transparent electrode or resistivity heating elements. Spray coating of eeG dispersions was investigated in detail as a simple and fast method to deposit both, thin conducting layers and ring structures on polycarbonate substrates. The spray coating process was examined by systematic variation of dispersion concentration and volume applied to heated substrates. Properties of the obtained layers were characterized by UV-VIS spectroscopy, SEM and Confocal Scanning Microscopy. Electrical conductivity of eeG ring structures was measured using micro-four-point measurements. Modification of eeG with poly(dopamine) and post-thermal treatment yields in the reduction of the oxidized graphene proportion, an increase in electrical conductivity, and mechanical stabilization of the deposited thin layers. The chemical composition of modified eeG layer was analyzed via x-ray photoelectron spectroscopy pointing to the reductive behavior of poly(dopamine). Application oriented experiments demonstrate the direct electric current heating (Joule-Heating) effect of spray-coated eeG layers.
  • Item
    Influence of Polyvinylpyrrolidone on Thermoelectric Properties of Melt-Mixed Polymer/Carbon Nanotube Composites
    (Basel : MDPI, 2023) Krause, Beate; Imhoff, Sarah; Voit, Brigitte; Pötschke, Petra
    For thermoelectric applications, both p- and n-type semi-conductive materials are combined. In melt-mixed composites based on thermoplastic polymers and carbon nanotubes, usually the p-type with a positive Seebeck coefficient (S) is present. One way to produce composites with a negative Seebeck coefficient is to add further additives. In the present study, for the first time, the combination of single-walled carbon nanotubes (SWCNTs) with polyvinylpyrrolidone (PVP) in melt-mixed composites is investigated. Polycarbonate (PC), poly(butylene terephthalate) (PBT), and poly(ether ether ketone) (PEEK) filled with SWCNTs and PVP were melt-mixed in small scales and thermoelectric properties of compression moulded plates were studied. It could be shown that a switch in the S-value from positive to negative values was only possible for PC composites. The addition of 5 wt% PVP shifted the S-value from 37.8 µV/K to −31.5 µV/K (2 wt% SWCNT). For PBT as a matrix, a decrease in the Seebeck coefficient from 59.4 µV/K to 8.0 µV/K (8 wt% PVP, 2 wt% SWCNT) could be found. In PEEK-based composites, the S-value increased slightly with the PVP content from 48.0 µV/K up to 54.3 µV/K (3 wt% PVP, 1 wt% SWCNT). In addition, the long-term stability of the composites was studied. Unfortunately, the achieved properties were not stable over a storage time of 6 or 18 months. Thus, in summary, PVP is not suitable for producing long-term stable, melt-mixed n-type SWCNT composites.