Search Results

Now showing 1 - 3 of 3
  • Item
    Screening of Different Carbon Nanotubes in Melt-Mixed Polymer Composites with Different Polymer Matrices for Their Thermoelectrical Properties
    (Basel : MDPI, 2019-12-7) Krause, Beate; Barbier, Carine; Levente, Juhasz; Klaus, Maxim; Pötschke, Petra
    The aim of this study is to reveal the influences of carbon nanotube (CNT) and polymer type as well as CNT content on electrical conductivity, Seebeck coefficient (S), and the resulting power factor (PF) and figure of merit (ZT). Different commercially available and laboratory made CNTs were used to prepare melt-mixed composites on a small scale. CNTs typically lead to p-type composites with positive S-values. This was found for the two types of multi-walled CNTs (MWCNT) whereby higher Seebeck coefficient in the corresponding buckypapers resulted in higher values also in the composites. Nitrogen doped MWCNTs resulted in negative S-values in the buckypapers as well as in the polymer composites. When using single-walled CNTs (SWCNTs) with a positive S-value in the buckypapers, positive (polypropylene (PP), polycarbonate (PC), poly (vinylidene fluoride) (PVDF), and poly(butylene terephthalate) (PBT)) or negative (polyamide 66 (PA66), polyamide 6 (PA6), partially aromatic polyamide (PARA), acrylonitrile butadiene styrene (ABS)) S-values were obtained depending on the matrix polymer and SWCNT type. The study shows that the direct production of n-type melt-mixed polymer composites from p-type commercial SWCNTs with relatively high Seebeck coefficients is possible. The highest Seebeck coefficients obtained in this study were 66.4 µV/K (PBT/7 wt % SWCNT Tuball) and −57.1 µV/K (ABS/0.5 wt % SWCNT Tuball) for p-and n-type composites, respectively. The highest power factor and ZT of 0.28 µW/m·K2 and 3.1 × 10−4, respectively, were achieved in PBT with 4 wt % SWCNT Tuball.
  • Item
    Ultralow percolation threshold in polyamide 6.6/MWCNT composites
    (Barking : Elsevier, 2015) Krause, Beate; Boldt, Regine; Häußler, Liane; Pötschke, Petra
    When incorporating multiwalled carbon nanotubes (MWCNTs) synthesised by the aerosol-CVD method using different solvents into polyamide 6.6 (PA66) by melt mixing an ultralow electrical percolation threshold of 0.04. wt.% was found. This very low threshold was assigned to the specific characteristic of the MWCNTs for which a very high aspect ratio, a good dispersability in aqueous surfactant dispersions, and relatively low oxygen content near the surface were measured. The investigation of the composites by transmission electron microscopy on ultrathin cuts as well as by scanning electron microscopy combined with charge contrast imaging on compression moulded plates illustrated a good MWCNT dispersion within the PA66 matrix and that the very high aspect ratio of the nanotubes remained even after melt processing. Additionally, the thermal behaviour of the PA66 composites was investigated using differential scanning calorimetry (DSC) showing that the addition of only 0.05. wt.% MWCNT leads to an increase of the onset crystallization temperature of 11. K.
  • Item
    Cellulose-carbon nanotube composite aerogels as novel thermoelectric materials
    (Amsterdam [u.a.] : Elsevier, 2018) Gnanaseelan, Minoj; Chen, Yian; Luo, Jinji; Krause, Beate; Pionteck, Jürgen; Pötschke, Petra; Qu, Haisong
    Thermoelectric materials based on cellulose/carbon nanotube (CNT) nanocomposites have been developed by a facile approach and the effects of amount (2–10 wt%) and types of CNTs (single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs)) on the morphology (films and aerogels) and the thermoelectric properties of the nanocomposites have been investigated. Composite films based on SWCNTs showed significantly higher electrical conductivity (5 S/cm at 10 wt%) and Seebeck coefficient (47.2 μV/K at 10 wt%) compared to those based on MWCNTs (0.9 S/cm and 11 μV/K, respectively). Lyophilization, leading to development of aerogels with sub-micron sized pores, decreased the electrical conductivity for both types by one order of magnitude, but did not affect the Seebeck coefficient of MWCNT based nanocomposites. For SWCNT containing aerogels, higher Seebeck coefficients than for films were measured at 3 and 4 wt% but significantly lower values at higher loadings. CNT addition increased the thermal conductivity from 0.06 to 0.12 W/(m∙K) in the films, whereas the lyophilization significantly reduced it towards values between 0.01 and 0.09 W/(m∙K) for the aerogels. The maximum Seebeck coefficient, power factor, and ZT observed in this study are 49 μV/K for aerogels with 3 wt% SWCNTs, 1.1 μW/(m∙K2) for composite films with 10 wt% SWCNTs, and 7.4 × 10−4 for films with 8 wt% SWCNTs, respectively.