Search Results

Now showing 1 - 10 of 13
  • Item
    The Localization Behavior of Different CNTs in PC/SAN Blends Containing a Reactive Component
    (Basel : MDPI, 2021-3-1) Gültner, Marén; Boldt, Regine; Formanek, Petr; Fischer, Dieter; Simon, Frank; Pötschke, Petra
    Co-continuous blend systems of polycarbonate (PC), poly(styrene-co-acrylonitrile) (SAN), commercial non-functionalized multi-walled carbon nanotubes (MWCNTs) or various types of commercial and laboratory functionalized single-walled carbon nanotubes (SWCNTs), and a reactive component (RC, N-phenylmaleimide styrene maleic anhydride copolymer) were melt compounded in one step in a microcompounder. The blend system is immiscible, while the RC is miscible with SAN and contains maleic anhydride groups that have the potential to reactively couple with functional groups on the surface of the nanotubes. The influence of the RC on the localization of MWCNTs and SWCNTs (0.5 wt.%) was investigated by transmission electron microscopy (TEM) and energy-filtered TEM. In PC/SAN blends without RC, MWCNTs are localized in the PC component. In contrast, in PC/SAN-RC, the MWCNTs localize in the SAN-RC component, depending on the RC concentration. By adjusting the MWCNT/RC ratio, the localization of the MWCNTs can be tuned. The SWCNTs behave differently compared to the MWCNTs in PC/SAN-RC blends and their localization occurs either only in the PC or in both blend components, depending on the type of the SWCNTs. CNT defect concentration and surface functionalities seem to be responsible for the localization differences.
  • Item
    Effect of filler synergy and cast film extrusion parameters on extrudability and direction-dependent conductivity of PVDF/carbon nanotube/carbon black composites
    (Basel : MDPI, 2020) Krause, Beate; Kunz, Karina; Kretzschmar, Bernd; Kühnert, Ines; Pötschke, Petra
    In the present study, melt-mixed composites based of poly (vinylidene fluoride) (PVDF) and fillers with different aspect ratios (carbon nanotubes (CNTs), carbon black (CB)) and their mixtures in composites were investigated whereby compression-molded plates were compared with melt-extruded films. The processing-related orientation of CNTs with a high aspect ratio leads to direction-dependent electrical and mechanical properties, which can be reduced by using mixed filler systems with the low aspect ratio CB. An upscaling of melt mixing from small scale to laboratory scale was carried out. From extruded materials, films were prepared down to a thickness of 50 µm by cast film extrusion under variation of the processing parameters. By combining CB and CNTs in PVDF, especially the electrical conductivity through the film could be increased compared to PVDF/CNT composites due to additional contact points in the sample thickness. The alignment of the fillers in the two directions within the films was deduced from the differences in electrical and mechanical film properties, which showed higher values in the extrusion direction than perpendicular to it.
  • Item
    CuxCo1-xFe2O4 (x = 0.33, 0.67, 1) Spinel Ferrite Nanoparticles Based Thermoplastic Polyurethane Nanocomposites with Reduced Graphene Oxide for Highly Efficient Electromagnetic Interference Shielding
    (Basel : Molecular Diversity Preservation International (MDPI), 2022-2-26) Anju; Yadav, Raghvendra Singh; Pötschke, Petra; Pionteck, Jürgen; Krause, Beate; Kuřitka, Ivo; Vilčáková, Jarmila; Škoda, David; Urbánek, Pavel; Machovský, Michal; Masař, Milan; Urbánek, Michal
    CuxCo1-x Fe2O4 (x = 0.33,0.67,1)-reduced graphene oxide (rGO)-thermoplastic polyurethane (TPU) nanocomposites exhibiting highly efficient electromagnetic interference (EMI) shielding were prepared by a melt-mixing approach using a microcompounder. Spinel ferrite Cu0.33Co0.67Fe2O4 (Cu-CoF1), Cu0.67Co0.33Fe2O4 (CuCoF2) and CuFe2O4 (CuF3) nanoparticles were synthesized using the sonochemical method. The CuCoF1 and CuCoF2 exhibited typical ferromagnetic features, whereas CuF3 displayed superparamagnetic characteristics. The maximum value of EMI total shielding effectiveness (SEt) was noticed to be 42.9 dB, 46.2 dB, and 58.8 dB for CuCoF1-rGO-TPU, CuCoF2-rGO-TPU, and CuF3-rGO-TPU nanocomposites, respectively, at a thickness of 1 mm. The highly efficient EMI shielding performance was attributed to the good impedance matching, conductive, dielectric, and magnetic loss. The demonstrated nanocomposites are promising candidates for a lightweight, flexible, and highly efficient EMI shielding material.
  • Item
    Thermoelectric Properties of N-Type Poly (Ether Ether Ketone)/Carbon Nanofiber Melt-Processed Composites
    (Basel : MDPI, 2022) Paleo, Antonio Jose; Krause, Beate; Soares, Delfim; Melle-Franco, Manuel; Muñoz, Enrique; Pötschke, Petra; Rocha, Ana Maria
    The thermoelectric properties, at temperatures from 30 °C to 100 °C, of melt-processed poly(ether ether ketone) (PEEK) composites prepared with 10 wt.% of carbon nanofibers (CNFs) are discussed in this work. At 30 °C, the PEEK/CNF composites show an electrical conductivity (σ) of ~27 S m−1 and a Seebeck coefficient (S) of −3.4 μV K−1, which means that their majority charge carriers are electrons. The origin of this negative Seebeck is deduced because of the impurities present in the as-received CNFs, which may cause sharply varying and localized states at approximately 0.086 eV above the Fermi energy level (EF) of CNFs. Moreover, the lower S, in absolute value, found in PEEK/CNF composites, when compared with the S of as-received CNFs (−5.3 μV K−1), is attributed to a slight electron withdrawing from the external layers of CNFs by the PEEK matrix. At temperatures from 30 °C to 100 °C, the σ (T) of PEEK/CNF composites, in contrast to the σ (T) of as-received CNFs, shows a negative temperature effect, understood through the 3D variable-range hopping (VRH) model, as a thermally activated hopping mechanism across a random network of potential wells. Moreover, their nonlinear S (T) follows the same behavior reported before for polypropylene composites melt-processed with similar CNFs at the same interval of temperatures.
  • Item
    High-Performance, Lightweight, and Flexible Thermoplastic Polyurethane Nanocomposites with Zn2+-Substituted CoFe2O4 Nanoparticles and Reduced Graphene Oxide as Shielding Materials against Electromagnetic Pollution
    (Washington, DC : ACS Publications, 2021-10-11) Anju; Yadav, Raghvendra Singh; Pötschke, Petra; Pionteck, Jürgen; Krause, Beate; Kuřitka, Ivo; Vilcakova, Jarmila; Skoda, David; Urbánek, Pavel; Machovsky, Michal; Masař, Milan; Urbánek, Michal; Jurca, Marek; Kalina, Lukas; Havlica, Jaromir
    The development of flexible, lightweight, and thin high-performance electromagnetic interference shielding materials is urgently needed for the protection of humans, the environment, and electronic devices against electromagnetic radiation. To achieve this, the spinel ferrite nanoparticles CoFe2O4 (CZ1), Co0.67Zn0.33Fe2O4 (CZ2), and Co0.33Zn0.67Fe2O4 (CZ3) were prepared by the sonochemical synthesis method. Further, these prepared spinel ferrite nanoparticles and reduced graphene oxide (rGO) were embedded in a thermoplastic polyurethane (TPU) matrix. The maximum electromagnetic interference (EMI) total shielding effectiveness (SET) values in the frequency range 8.2-12.4 GHz of these nanocomposites with a thickness of only 0.8 mm were 48.3, 61.8, and 67.8 dB for CZ1-rGO-TPU, CZ2-rGO-TPU, and CZ3-rGO-TPU, respectively. The high-performance electromagnetic interference shielding characteristics of the CZ3-rGO-TPU nanocomposite stem from dipole and interfacial polarization, conduction loss, multiple scattering, eddy current effect, natural resonance, high attenuation constant, and impedance matching. The optimized CZ3-rGO-TPU nanocomposite can be a potential candidate as a lightweight, flexible, thin, and high-performance electromagnetic interference shielding material.
  • Item
    Nonlinear Thermopower Behaviour of N-Type Carbon Nanofibres and Their Melt Mixed Polypropylene Composites
    (Basel : MDPI, 2022-1-10) Paleo, Antonio J.; Krause, Beate; Cerqueira, Maria F.; Muñoz, Enrique; Pötschke, Petra; Rocha, Ana M.
    The temperature dependent electrical conductivity σ (T) and thermopower (Seebeck coeffi-cient) S (T) from 303.15 K (30◦ C) to 373.15 K (100◦ C) of an as-received commercial n-type vapour grown carbon nanofibre (CNF) powder and its melt-mixed polypropylene (PP) composite with 5 wt.% of CNFs have been analysed. At 30◦ C, the σ and S of the CNF powder are ~136 S m−1 and −5.1 µV K−1, respectively, whereas its PP/CNF composite showed lower conductivities and less negative S-values of ~15 S m−1 and −3.4 µV K−1, respectively. The σ (T) of both samples presents a dσ/dT < 0 character described by the 3D variable range hopping (VRH) model. In contrast, their S (T) shows a dS/dT > 0 character, also observed in some doped multiwall carbon nanotube (MWCNT) mats with nonlinear thermopower behaviour, and explained here from the contribution of impurities in the CNF structure such as oxygen and sulphur, which cause sharply varying and localized states at approximately 0.09 eV above their Fermi energy level (EF).
  • Item
    Nanocomposites with p-and n-type conductivity controlled by type and content of nanotubes in thermosets for thermoelectric applications
    (Basel : MDPI, 2020) Kröning, Katharina; Krause, Beate; Pötschke, Petra; Fiedler, Bodo
    In this work, composites based on epoxy resin and various carbon nanotubes (CNTs) were studied regarding their thermoelectric properties. The epoxy composites were prepared by infiltration of preformed CNT buckypapers. The influence of different types of CNTs on the Seebeck coefficient was investigated, namely lab-made and commercially available multi walled carbon nanotubes (MWCNTs), lab-made nitrogen doped MWCNTs (N-MWCNT) and commercially available single walled carbon nanotubes (SWCNTs). It was found that only by varying the lab-made MWCNT content could both n-and p-type composites be produced with Seebeck coefficients between -9.5 and 3.1 µV/K. The incorporation of N-MWCNTs resulted in negative Seebeck coefficients of -11.4 to -17.4 µV/K. Thus, the Seebeck coefficient of pure SWCNT changed from 37.4 to -25.5 µV/K in the epoxy/1 wt. % SWCNT composite. A possible explanation for the shift in the Seebeck coefficient is the change of the CNTs Fermi level depending on the number of epoxy molecules on the CNT surface. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Ultrathin structures derived from interfacially modified polymeric nanocomposites to curb electromagnetic pollution
    (Cambridge : Royal Society of Chemistry, 2021) Sushmita, Kumari; Formanek, Petr; Fischer, Dieter; Pötschke, Petra; Madras, Giridhar; Bose, Suryasarathi
    The use of electronic devices and wireless networks is increasing rapidly, and electromagnetic (EM) pollution remediation remains a challenge. We employed a unique approach to fabricate two ultrathin (approx. 53 μm) multilayered assemblies to address this. By sequentially stacking thin films of polyvinylidene difluoride (PVDF) and polycarbonate (PC) nanocomposites and interfacially locking them with a mutually miscible polymer (PMMA, polymethyl methacrylate), materials with enhanced structural properties and electromagnetic interference (EMI) shielding performance can be designed. Utilizing reduced graphene oxide (rGO) and molybdenum disulfide (MoS2) as a template, ferrite was grown on the surface to design two different nanohybrid structures (rGO–Fe3O4 and MoS2–Fe3O4). PVDF was composited with either rGO–Fe3O4 or MoS2–Fe3O4, and multiwall carbon nanotubes (CNTs) were dispersed in the PC component. As PC and PVDF are immiscible, their poor interface would result in inferior structural properties, which can be challenging in designing EMI shielding materials due to cyclic thermal fatigue. Hence, PMMA is sandwiched to interfacially stitch the components (PC and PVDF) and improve interfacial adhesion. This was confirmed using SEM/EDS and Raman mapping/imaging. The mechanical stability of the multilayered assemblies was characterized using a dynamic mechanical analyzer (DMA), and the storage modulus was found to be as high as 2767 MPa at 40 °C (@constant frequency and strain amplitude), for the multilayered film with rGO–Fe3O4 in PVDF, PMMA as a sandwich layer and CNTs in PC. A typical assembly of 9 multilayers (∼480 μm) with rGO–Fe3O4 in PVDF, and CNTs in PC, and interfacially stitched with PMMA gave rise to a high EMI shield effectiveness (SET) of −26.3 dB @ 26.5 GHz. This unique arrangement of a multilayered assembly suppressed EMI primarily by absorption.
  • Item
    Bio-inspired deposition of electrochemically exfoliated graphene layers for electrical resistance heating applications
    (Bristol : IOP Publishing, 2020-12-4) Utech, Toni; Pötschke, Petra; Simon, Frank; Janke, Andreas; Kettner, Hannes; Paiva, Maria; Zimmerer, Cordelia
    Electrochemically exfoliated graphene (eeG) layers possess a variety of potential applications, e.g. as susceptor material for contactless induction heating in dynamic electro-magnetic fields, and as flexible and transparent electrode or resistivity heating elements. Spray coating of eeG dispersions was investigated in detail as a simple and fast method to deposit both, thin conducting layers and ring structures on polycarbonate substrates. The spray coating process was examined by systematic variation of dispersion concentration and volume applied to heated substrates. Properties of the obtained layers were characterized by UV-VIS spectroscopy, SEM and Confocal Scanning Microscopy. Electrical conductivity of eeG ring structures was measured using micro-four-point measurements. Modification of eeG with poly(dopamine) and post-thermal treatment yields in the reduction of the oxidized graphene proportion, an increase in electrical conductivity, and mechanical stabilization of the deposited thin layers. The chemical composition of modified eeG layer was analyzed via x-ray photoelectron spectroscopy pointing to the reductive behavior of poly(dopamine). Application oriented experiments demonstrate the direct electric current heating (Joule-Heating) effect of spray-coated eeG layers.
  • Item
    Aerogels based on reduced graphene oxide/cellulose composites: Preparation and vapour sensing abilities
    (Basel : MDPI, 2020) Chen, Yian; Pötschke, Petra; Pionteck, Jürgen; Voit, Brigitte; Qi, Haisong
    This paper reports on the preparation of cellulose/reduced graphene oxide (rGO) aerogels for use as chemical vapour sensors. Cellulose/rGO composite aerogels were prepared by dissolving cellulose and dispersing graphene oxide (GO) in aqueous NaOH/urea solution, followed by an in-situ reduction of GO to reduced GO (rGO) and lyophilisation. The vapour sensing properties of cellulose/rGO composite aerogels were investigated by measuring the change in electrical resistance during cyclic exposure to vapours with varying solubility parameters, namely water, methanol, ethanol, acetone, toluene, tetrahydrofuran (THF), and chloroform. The increase in resistance of aerogels on exposure to vapours is in the range of 7 to 40% with methanol giving the highest response. The sensing signal increases almost linearly with the vapour concentration, as tested for methanol. The resistance changes are caused by the destruction of the conductive filler network due to a combination of swelling of the cellulose matrix and adsorption of vapour molecules on the filler surfaces. This combined mechanism leads to an increased sensing response with increasing conductive filler content. Overall, fast reaction, good reproducibility, high sensitivity, and good differentiation ability between different vapours characterize the detection behaviour of the aerogels. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.