Search Results

Now showing 1 - 8 of 8
  • Item
    Lightweight polymer-carbon composite current collector for lithium-ion batteries
    (Basel : MDPI, 2020) Fritsch, Marco; Coeler, Matthias; Kunz, Karina; Krause, Beate; Marcinkowski, Peter; Pötschke, Petra; Wolter, Mareike; Michaelis, Alexander
    A hermetic dense polymer-carbon composite-based current collector foil (PCCF) for lithium-ion battery applications was developed and evaluated in comparison to state-of-the-art aluminum (Al) foil collector. Water-processed LiNi0.5Mn1.5O4 (LMNO) cathode and Li4Ti5O12 (LTO) anode coatings with the integration of a thin carbon primer at the interface to the collector were prepared. Despite the fact that the laboratory manufactured PCCF shows a much higher film thickness of 55 µm compared to Al foil of 19 µm, the electrode resistance was measured to be by a factor of 5 lower compared to the Al collector, which was attributed to the low contact resistance between PCCF, carbon primer and electrode microstructure. The PCCF-C-primer collector shows a sufficient voltage stability up to 5 V vs. Li/Li+ and a negligible Li-intercalation loss into the carbon primer. Electrochemical cell tests demonstrate the applicability of the developed PCCF for LMNO and LTO electrodes, with no disadvantage compared to state-of-the-art Al collector. Due to a 50% lower material density, the lightweight and hermetic dense PCCF polymer collector offers the possibility to significantly decrease the mass loading of the collector in battery cells, which can be of special interest for bipolar battery architectures. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Thermoelectric Performance of Polypropylene/Carbon Nanotube/Ionic Liquid Composites and Its Dependence on Electron Beam Irradiation
    (Basel : MDPI, 2022-1-11) Voigt, Oliver; Krause, Beate; Pötschke, Petra; Müller, Michael T.; Wießner, Sven
    The thermoelectric behavior of polypropylene (PP) based nanocomposites containing single walled carbon nanotubes (SWCNTs) and five kinds of ionic liquids (Ils) dependent on composite composition and electron beam irradiation (EB) was studied. Therefore, several samples were melt-mixed in a micro compounder, while five Ils with sufficiently different anions and/or cations were incorporated into the PP/SWCNT composites followed by an EB treatment for selected composites. Extensive investigations were carried out considering the electrical, thermal, mechanical, rheological, morphological and, most significantly, thermoelectric properties. It was found that it is possible to prepare n-type melt-mixed polymer composites from p-type commercial SWCNTs with relatively high Seebeck coefficients when adding four of the selected Ils. The highest Seebeck coefficients achieved in this study were +49.3 µV/K (PP/2 wt.% SWCNT) for p-type composites and −27.6 µV/K (PP/2 wt.% SWCNT/4 wt.% IL type AMIM Cl) for n-type composites. Generally, the type of IL is decisive whether p-or n-type thermoelectric behavior is achieved. After IL addition higher volume conductivity could be reached. Electron beam treatment of PP/SWCNT leads to increased values of the Seebeck coefficient, whereas the EB treated sample with IL (AMIM Cl) shows a less negative Seebeck coefficient value.
  • Item
    Nitrogen-Doped Carbon Nanotube/Polypropylene Composites with Negative Seebeck Coefficient
    (Basel : MDPI, 2020) Krause, Beate; Konidakis, Ioannis; Arjmand, Mohammad; Sundararaj, Uttandaraman; Fuge, Robert; Liebscher, Marco; Hampel, Silke; Klaus, Maxim; Serpetzoglou, Efthymis; Stratakis, Emmanuel; Pötschke, Petra
    This study describes the application of multi-walled carbon nanotubes that were nitrogen-doped during their synthesis (N-MWCNTs) in melt-mixed polypropylene (PP) composites. Different types of N-MWCNTs, synthesized using different methods, were used and compared. Four of the five MWCNT grades showed negative Seebeck coefficients (S), indicating n-type charge carrier behavior. All prepared composites (with a concentration between 2 and 7.5 wt% N-MWCNTs) also showed negative S values, which in most cases had a higher negative value than the corresponding nanotubes. The S values achieved were between 1.0 µV/K and −13.8 µV/K for the N-MWCNT buckypapers or powders and between −4.7 µV/K and −22.8 µV/K for the corresponding composites. With a higher content of N-MWCNTs, the increase in electrical conductivity led to increasing values of the power factor (PF) despite the unstable behavior of the Seebeck coefficient. The highest power factor was achieved with 4 wt% N-MWCNT, where a suitable combination of high electrical conductivity and acceptable Seebeck coefficient led to a PF value of 6.1 × 10−3 µW/(m·K2). First experiments have shown that transient absorption spectroscopy (TAS) is a useful tool to study the carrier transfer process in CNTs in composites and to correlate it with the Seebeck coefficient.
  • Item
    Influence of Polyvinylpyrrolidone on Thermoelectric Properties of Melt-Mixed Polymer/Carbon Nanotube Composites
    (Basel : MDPI, 2023) Krause, Beate; Imhoff, Sarah; Voit, Brigitte; Pötschke, Petra
    For thermoelectric applications, both p- and n-type semi-conductive materials are combined. In melt-mixed composites based on thermoplastic polymers and carbon nanotubes, usually the p-type with a positive Seebeck coefficient (S) is present. One way to produce composites with a negative Seebeck coefficient is to add further additives. In the present study, for the first time, the combination of single-walled carbon nanotubes (SWCNTs) with polyvinylpyrrolidone (PVP) in melt-mixed composites is investigated. Polycarbonate (PC), poly(butylene terephthalate) (PBT), and poly(ether ether ketone) (PEEK) filled with SWCNTs and PVP were melt-mixed in small scales and thermoelectric properties of compression moulded plates were studied. It could be shown that a switch in the S-value from positive to negative values was only possible for PC composites. The addition of 5 wt% PVP shifted the S-value from 37.8 µV/K to −31.5 µV/K (2 wt% SWCNT). For PBT as a matrix, a decrease in the Seebeck coefficient from 59.4 µV/K to 8.0 µV/K (8 wt% PVP, 2 wt% SWCNT) could be found. In PEEK-based composites, the S-value increased slightly with the PVP content from 48.0 µV/K up to 54.3 µV/K (3 wt% PVP, 1 wt% SWCNT). In addition, the long-term stability of the composites was studied. Unfortunately, the achieved properties were not stable over a storage time of 6 or 18 months. Thus, in summary, PVP is not suitable for producing long-term stable, melt-mixed n-type SWCNT composites.
  • Item
    Does the Type of Polymer and Carbon Nanotube Structure Control the Electromagnetic Shielding in Melt-Mixed Polymer Nanocomposites?
    (Basel : MDPI, 2020-1-15) Biswas, Sourav; Muzata, Tanyaradzwa S.; Krause, Beate; Rzeczkowski, Piotr; Pötschke, Petra; Bose, Suryasarathi
    A suitable polymer matrix and well dispersed conducting fillers forming an electrically conducting network are the prime requisites for modern age electromagnetic shield designing. An effective polymer-based shield material is designed that can attenuate 99.9% of incident electromagnetic (EM) radiation at a minimum thickness of <0.5 mm. This is accomplished by the choice of a suitable partially crystalline polymer matrix while comparing non-polar polypropylene (PP) with polar polyvinylidene fluoride (PVDF) and a best suited filler nanomaterial by comparing different types of carbon nanotubes such as; branched, single-walled and multi-walled carbon nanotubes, which were added in only 2 wt %. Different types of interactions (polar-polar and CH-π and donor-acceptor) make b-MWCNT more dispersible in the PVDF matrix, which together with high crystallinity resulted in the best electrical conductivity and electromagnetic shielding ability of this composite. This investigation additionally conceals the issues related to the thickness of the shield material just by stacking individual thin nanocomposite layers containing different carbon nanotube (CNT) types with 0.3 mm thickness in a simple manner and finally achieves 99.999% shielding efficiency at just 0.9 mm thickness when using a suitable order of the different PVDF based nanocomposites.
  • Item
    Screening of Different Carbon Nanotubes in Melt-Mixed Polymer Composites with Different Polymer Matrices for Their Thermoelectrical Properties
    (Basel : MDPI, 2019-12-7) Krause, Beate; Barbier, Carine; Levente, Juhasz; Klaus, Maxim; Pötschke, Petra
    The aim of this study is to reveal the influences of carbon nanotube (CNT) and polymer type as well as CNT content on electrical conductivity, Seebeck coefficient (S), and the resulting power factor (PF) and figure of merit (ZT). Different commercially available and laboratory made CNTs were used to prepare melt-mixed composites on a small scale. CNTs typically lead to p-type composites with positive S-values. This was found for the two types of multi-walled CNTs (MWCNT) whereby higher Seebeck coefficient in the corresponding buckypapers resulted in higher values also in the composites. Nitrogen doped MWCNTs resulted in negative S-values in the buckypapers as well as in the polymer composites. When using single-walled CNTs (SWCNTs) with a positive S-value in the buckypapers, positive (polypropylene (PP), polycarbonate (PC), poly (vinylidene fluoride) (PVDF), and poly(butylene terephthalate) (PBT)) or negative (polyamide 66 (PA66), polyamide 6 (PA6), partially aromatic polyamide (PARA), acrylonitrile butadiene styrene (ABS)) S-values were obtained depending on the matrix polymer and SWCNT type. The study shows that the direct production of n-type melt-mixed polymer composites from p-type commercial SWCNTs with relatively high Seebeck coefficients is possible. The highest Seebeck coefficients obtained in this study were 66.4 µV/K (PBT/7 wt % SWCNT Tuball) and −57.1 µV/K (ABS/0.5 wt % SWCNT Tuball) for p-and n-type composites, respectively. The highest power factor and ZT of 0.28 µW/m·K2 and 3.1 × 10−4, respectively, were achieved in PBT with 4 wt % SWCNT Tuball.
  • Item
    Mixed Carbon Nanomaterial/Epoxy Resin for Electrically Conductive Adhesives
    (Basel : MDPI, 2020) Lopes, Paulo E.; Moura, Duarte; Hilliou, Loic; Krause, Beate; Pötschke, Petra; Figueiredo, Hugo; Alves, Ricardo; Lepleux, Emmanuel; Pacheco, Louis; Paiva, Maria C.
    The increasing complexity of printed circuit boards (PCBs) due to miniaturization, increased the density of electronic components, and demanding thermal management during the assembly triggered the research of innovative solder pastes and electrically conductive adhesives (ECAs). Current commercial ECAs are typically based on epoxy matrices with a high load (>60%) of silver particles, generally in the form of microflakes. The present work reports the production of ECAs based on epoxy/carbon nanomaterials using carbon nanotubes (single and multi-walled) and exfoliated graphite, as well as hybrid compositions, within a range of concentrations. The composites were tested for morphology (dispersion of the conductive nanomaterials), electrical and thermal conductivity, rheological characteristics and deposition on a test PCB. Finally, the ECA’s shelf life was assessed by mixing all the components and conductive nanomaterials, and evaluating the cure of the resin before and after freezing for a time range up to nine months. The ECAs produced could be stored at −18 °C without affecting the cure reaction.
  • Item
    Boron doping of SWCNTs as a way to enhance the thermoelectric properties of melt‐mixed polypropylene/SWCNT composites
    (Basel : MDPI, 2020) Krause, Beate; Bezugly, Viktor; Khavrus, Vyacheslav; Ye, Liu; Cuniberti, Gianaurelio; Pötschke, Petra
    Composites based on the matrix polymer polypropylene (PP) filled with single‐walled carbon nanotubes (SWCNTs) and boron‐doped SWCNTs (B‐SWCNTs) were prepared by melt‐mixing to analyze the influence of boron doping of SWCNTs on the thermoelectric properties of these nanocomposites. It was found that besides a significantly higher Seebeck coefficient of B‐SWCNT films and powder packages, the values for B‐SWCNT incorporated in PP were higher than those for SWCNTs. Due to the higher electrical conductivity and the higher Seebeck coefficients of B‐SWCNTs, the power factor (PF) and the figure of merit (ZT) were also higher for the PP/B‐SWCNT composites. The highest value achieved in this study was a Seebeck coefficient of 59.7 μV/K for PP with 0.5 wt% B‐SWCNT compared to 47.9 μV/K for SWCNTs at the same filling level. The highest PF was 0.78 μW/(m∙K2) for PP with 7.5 wt% B‐SWCNT. SWCNT macro‐ and microdispersions were found to be similar in both composite types, as was the very low electrical percolation threshold between 0.075 and 0.1 wt% SWCNT. At loadings between 0.5 and 2.0 wt%, B‐SWCNT‐based composites have one order of magnitude higher electrical conductivity than those based on SWCNT. The crystallization behavior of PP is more strongly influenced by B‐SWCNTs since their composites have higher crystallization temperatures than composites with SWCNTs at a comparable degree of crystallinity. Boron doping of SWCNTs is therefore a suitable way to improve the electrical and thermoelectric properties of composites. © 2020 by the authors.