Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Effects of synthesis catalyst and temperature on broadband dielectric properties of nitrogen-doped carbon nanotube/polyvinylidene fluoride nanocomposites

2016, Ameli, A., Arjmand, M., Pötschke, Petra, Krause, Beate, Sundararaj, U.

This study reports on nitrogen-doped carbon nanotube (N-CNT)/polymer nanocomposites exhibiting relatively high and frequency independent real permittivity (ϵ′) together with low dielectric loss (tan δ). N-CNTs were synthesized by chemical vapor deposition, and their nanocomposites were prepared by melt-mixing with polyvinylidene fluoride (PVDF). In the synthesis of N-CNTs, three catalysts of Co, Fe and Ni, and three temperatures of 650, 750 and 950 °C were employed. The morphology, aspect ratio, synthesis yield, remaining residue, nitrogen content, nitrogen bonding type, and powder conductivity of N-CNTs, and the morphology, polar crystalline phase, and broadband dielectric properties of N-CNT/PVDF nanocomposites were investigated. The results revealed that by proper selection of synthesis catalyst (Fe) and temperature (650 °C and 950 °C), nitrogen doping generated polarizable nanotubes via providing local polarization sites, and resulted in nanocomposites with favorable dielectric properties for charge storage applications at N-CNT loadings as low as 1.0 wt%. As a result, 3.5 wt% (N-CNT)Fe/950°C/PVDF nanocomposites exhibited an insulative behavior with ϵ' = 23.12 and tan δ = 0.05 at 1 kHz, a combination superior to that of PVDF, i.e., ϵ' = 8.4 and tan δ = 0.03 and to those of percolative nanocomposites, e.g., ϵ' = 71.20 and tan δ = 63.20 for 3.5 wt% (N-CNT)Fe/750°C/PVDF. Also, the relationships between the dielectric properties, N-CNT structure, and nanocomposite morphology were identified.

Loading...
Thumbnail Image
Item

Effect of synthesis catalyst on structure of nitrogen-doped carbon nanotubes and electrical conductivity and electromagnetic interference shielding of their polymeric nanocomposites

2016, Arjmand, Mohammad, Chizari, Kambiz, Krause, Beate, Pötschke, Petra, Sundararaj, Uttandaraman

Different catalysts including Co, Fe, and Ni were used to synthesize nitrogen-doped carbon nanotubes (N-CNTs) by chemical vapor deposition technique. Synthesized N-CNTs were melt mixed with a polyvinylidene fluoride (PVDF) matrix using a small scale mixer at different concentrations ranging from 0.3 to 3.5 wt%, and then compression molded. The characterization techniques revealed significant differences in the synthesis yield and the morphological and electrical properties of both N-CNTs and nanocomposites depending on the catalyst type. Whereas Co and Fe resulted in yields comparable to industrial multiwalled CNTs, Ni was much less effective. The N-CNT aspect ratio was the highest for Co catalyst, followed by Ni and Fe, whereas nitrogen content was the highest for Ni. Raman spectroscopy revealed lowest defect number and highest N-CNT crystallinity for Fe catalyst. Characterization of N-CNT/PVDF nanocomposites showed better dispersion for N-CNTs based on Co and Fe as compared to Ni, and the following order of electrical conductivity and electromagnetic interference shielding (from high to low): Co > Fe > Ni. The superior electrical properties of (N-CNT)Co nanocomposites were ascribed to a combination of high synthesis yield, high aspect ratio, low nitrogen content and high crystallinity of N-CNTs combined with a good state of N-CNT dispersion.