Search Results

Now showing 1 - 5 of 5
  • Item
    Effect of filler synergy and cast film extrusion parameters on extrudability and direction-dependent conductivity of PVDF/carbon nanotube/carbon black composites
    (Basel : MDPI, 2020) Krause, Beate; Kunz, Karina; Kretzschmar, Bernd; Kühnert, Ines; Pötschke, Petra
    In the present study, melt-mixed composites based of poly (vinylidene fluoride) (PVDF) and fillers with different aspect ratios (carbon nanotubes (CNTs), carbon black (CB)) and their mixtures in composites were investigated whereby compression-molded plates were compared with melt-extruded films. The processing-related orientation of CNTs with a high aspect ratio leads to direction-dependent electrical and mechanical properties, which can be reduced by using mixed filler systems with the low aspect ratio CB. An upscaling of melt mixing from small scale to laboratory scale was carried out. From extruded materials, films were prepared down to a thickness of 50 µm by cast film extrusion under variation of the processing parameters. By combining CB and CNTs in PVDF, especially the electrical conductivity through the film could be increased compared to PVDF/CNT composites due to additional contact points in the sample thickness. The alignment of the fillers in the two directions within the films was deduced from the differences in electrical and mechanical film properties, which showed higher values in the extrusion direction than perpendicular to it.
  • Item
    Direction dependent electrical conductivity of polymer/carbon filler composites
    (Basel : MDPI, 2019) Kunz, Karina; Krause, Beate; Kretzschmar, Bernd; Juhasz, Levente; Kobsch, Oliver; Jenschke, Wolfgang; Ullrich, Mathias; Pötschke, Petra
    The method of measuring electrical volume resistivity in different directions was applied to characterize the filler orientation in melt mixed polymer composites containing different carbon fillers. For this purpose, various kinds of fillers with different geometries and aspect ratios were selected, namely carbon black (CB), graphite (G) and expanded graphite (EG), branched multiwalled carbon nanotubes (b-MWCNTs), non-branched multiwalled carbon nanotubes (MWCNTs), and single-walled carbon nanotubes (SWCNTs). As it is well known that the shaping process also plays an important role in the achieved electrical properties, this study compares results for compression molded plates with random filler orientations in the plane as well as extruded films, which have, moreover, conductivity differences between extrusion direction and perpendicular to the plane. Additionally, the polymer matrix type (poly (vinylidene fluoride) (PVDF), acrylonitrile butadiene styrene (ABS), polyamide 6 (PA6)) and filler concentration were varied. For the electrical measurements, a device able to measure the electrical conductivity in two directions was developed and constructed. The filler orientation was analyzed using the ratio σin/th calculated as in-plane conductivity σin-plane (σin) divided by through-plane conductivity σthrough-plane (σth). The ratio σin/th is expected to increase with more pronounced filler orientation in the processing direction. In the extruded films, alignment within the plane was assigned by dividing the in-plane conductivity in the extrusion direction (x) by the in-plane conductivity perpendicular to the extrusion direction (y). The conductivity ratios depend on filler type and concentration and are higher the higher the filler aspect ratio and the closer the filler content is to the percolation concentration.
  • Item
    Influence of feeding conditions in twin-screw extrusion of PP/MWCNT composites on electrical and mechanical properties
    (Barking : Elsevier, 2011) Müller, Michael Thomas; Krause, Beate; Kretzschmar, Bernd; Pötschke, Petra
    The influence of feeding conditions of multiwalled carbon nanotube (MWCNT) materials, namely Baytubes® C150P and Nanocyl™ NC7000, into polypropylene (PP) was investigated with respect to achieving suitable nanotube dispersion, high electrical conductivity, and good mechanical properties. Both MWCNT materials were fed at selected concentrations either in the hopper of the twin-screw extruder or using a side feeder under otherwise identical extrusion conditions (rotation speed, throughput, temperature profile) using a Berstorff ZE 25 twin-screw extruder. Afterwards, injection molding was performed under identical conditions. The results indicate that the more compact Baytubes® C150P agglomerates should be added into the hopper, as the dispersion assessed by light microscopy is better, electrical resistivities measured on compression and injection molded samples are lower, and elastic modulus, yield strength and impact strength are higher as compared to side feeding. On the other hand, for the more loosely packed Nanocyl™ NC7000 agglomerates, addition using the side feeder leads to better dispersion, lower electrical resistivity, and higher mechanical properties. © 2011 Elsevier Ltd.
  • Item
    Percolation behaviour of multiwalled carbon nanotubes of altered length and primary agglomerate morphology in melt mixed isotactic polypropylene-based composites
    (Barking : Elsevier, 2011) Menzer, Katharina; Krause, Beate; Boldt, Regine; Kretzschmar, Bernd; Weidisch, Roland; Pötschke, Petra
    The effect of ball milling on the structural characteristics and further on the dispersion and percolation behaviour of multiwalled carbon nanotubes (MWCNTs) in melt mixed composites using a maleic anhydride modified isotactic polypropylene as matrix was investigated. TEM and SEM revealed that ball milled nanotubes were considerably shorter and showed a compact primary agglomerate morphology compared to the as-synthesised MWCNTs. At macro scale ball milled MWCNTs were found to be better dispersed, whereas at sub-micron scale the states of dispersion of both nanotube materials were comparable. The differences in the composite morphologies as well as in the composites electrical and rheological percolation behaviour were assigned to the altered MWCNT structure due to ball milling treatment. The dispersibility of ball milled MWCNTs was restricted due to their more compact agglomerate morphology. Furthermore, the ability to form percolated network structures was restrained by their shorter length and, again, their compact primary agglomerates. An effective agglomerate interaction radius depending on the nanotube structural characteristics, length and agglomerate morphology, is suggested in order to explain the experimental findings. © 2011 Elsevier Ltd.
  • Item
    Influence of a supplemental filler in twin-screw extruded PP/CNT composites using masterbatch dilution
    (Melville, NY : AIP, 2019) Müller, Michael Thomas; Krause, Beate; Kretzschmar, Bernd; Pötschke, Petra
    In this study commercially available multiwalled carbon nanotubes (2-8 wt.%) were incorporated in polypropylene (PP) by direct powder feeding or by a masterbatch dilution procedure using a twin-screw extruder. The influence of a supplemental, electrical non-conductive talc or electrically conductive carbon black (CB), filler on the resulting composite properties was investigated. In comparison to the direct carbon nanotube (CNT) incorporation the masterbatch dilution step resulted in improved CNT macro dispersion. The use of the supplemental fillers CB or talc does not show a significant influence on the CNT dispersion state. When compared to direct CNT incorporation, the second compounding process involved in masterbatch dilution leads to higher electrical resistivity of injection molded samples. On the other hand, the supplemental fillers talc or CB decreased the electrical resistivity values. With the addition of talc or CB an increase of the Young’s modulus due to the reinforcing effect of the second filler was achieved. However, no synergistic effect between the used supplemental fillers and the CNT on the mechanical properties was obtained.