Search Results

Now showing 1 - 7 of 7
  • Item
    Effect of Graphite Nanoplate Morphology on the Dispersion and Physical Properties of Polycarbonate Based Composites
    (Basel : MDPI, 2017-5-18) Müller, Michael Thomas; Hilarius, Konrad; Liebscher, Marco; Lellinger, Dirk; Alig, Ingo; Pötschke, Petra
    The influence of the morphology of industrial graphite nanoplate (GNP) materials on their dispersion in polycarbonate (PC) is studied. Three GNP morphology types were identified, namely lamellar, fragmented or compact structure. The dispersion evolution of all GNP types in PC is similar with varying melt temperature, screw speed, or mixing time during melt mixing. Increased shear stress reduces the size of GNP primary structures, whereby the GNP aspect ratio decreases. A significant GNP exfoliation to individual or few graphene layers could not be achieved under the selected melt mixing conditions. The resulting GNP macrodispersion depends on the individual GNP morphology, particle sizes and bulk density and is clearly reflected in the composite's electrical, thermal, mechanical, and gas barrier properties. Based on a comparison with carbon nanotubes (CNT) and carbon black (CB), CNT are recommended in regard to electrical conductivity, whereas, for thermal conductive or gas barrier application, GNP is preferred.
  • Item
    Thermal annealing to influence the vapor sensing behavior of co-continuous poly(lactic acid)/polystyrene/multiwalled carbon nanotube composites
    (Amsterdam [u.a.] : Elsevier Science, 2020) Li, Yilong; Pionteck, Jürgen; Pötschke, Petra; Voit, Brigitte
    With the main purpose of being used as vapor leakage detector, the volatile organic compound (VOC) vapor sensing properties of conductive polymer blend composites were studied. Poly(lactic acid)/polystyrene/multi-walled carbon nanotube (PLA/PS/MWCNT) based conductive polymer composites (CPCs) in which the polymer components exhibit different interactions with the vapors, were prepared by melt mixing. CPCs with a blend composition of 50/50 wt% resulted in the finest co-continuous structure and selective MWCNT localization in PLA. Therefore, these composites were selected for sensor tests. Thermal annealing was applied aiming to maintain the blend structure but improving the sensing reversibility of CPC sensors towards high vapor concentrations. Different sensing protocols were applied using acetone (good solvent for PS and PLA) and cyclohexane (good solvent for PS but poor solvent for PLA) vapors. Increasing acetone vapor concentration resulted in increased relative resistance change (Rrel) of CPCs. Saturated cyclohexane vapor resulted in lower response than nearly saturated acetone vapor. The thermal annealing at 150 °C did not change the blend morphology but increased the PLA crystallinity, making the CPC sensors more resistant to vapor stimulation, resulting in lower Rrel but better reversibility after vapor exposure.
  • Item
    Polylactic Acid/Carbon Nanoparticle Composite Filaments for Sensing
    (Basel : MDPI, 2021-3-15) Silva, Mariana M.; Lopes, Paulo E.; Li, Yilong; Pötschke, Petra; Ferreira, Fernando N.; Paiva, Maria C.
    Polylactic acid (PLA) is a bio-based, biodegradable polymer that presents high potential for biomedical and sensing applications. Ongoing works reported in the literature concern mainly applications based on 3D printing, while textile applications are hindered by the limited flexibility of PLA and its composite filaments. In the present work, PLA/multiwall carbon nanotube (MWCNT) composite filaments were produced with enhanced flexibility and electrical conductivity, which may be applied on a textile structure. A biodegradable plasticizer was incorporated in the nanocomposites, aiming at improving MWCNT dispersion and increasing the flexibility of the filaments. Filaments were produced with a range of compositions and their morphology was characterized as well as their thermal, thermomechanical, and electrical properties. Selected compositions were tested for sensing activity using saturated acetone vapor, demonstrating a suitable response and potential for the application in fabrics with sensing capacity.
  • Item
    Organic vapor sensing behavior of polycarbonate/polystyrene/multi-walled carbon nanotube blend composites with different microstructures
    (Amsterdam [u.a.] : Elsevier Science, 2019) Li, Yilong; Pionteck, Jürgen; Pötschke, Petra; Voit, Brigitte
    With the focus on the use as leakage detectors, the vapor sensing behavior of conductive polymer composites (CPCs) based on polycarbonate/polystyrene/multi-walled carbon nanotube (PC/PS/MWCNT) blends with different blend ratios was studied as well as their morphological and electrical properties. In the melt mixed blend composites, the MWCNTs are preferentially localized in PC. At the PC/PS ratio of 70/30 wt%, the composites showed a sea-island structure, while for blends containing 40 wt% or 50 wt% PS co-continuous structures were developed resulting in a reduction in the MWCNT percolation threshold. The saturated vapors of the selected solvents have good interactions to PS but different interactions to PC. At 0.75 wt% MWCNT, sea-island CPCs showed high relative resistance change (Rrel) but poor reversibility towards moderate vapors like ethyl acetate and toluene, while CPCs with co-continuous structure exhibited lower Rrel and better reversibility. All CPCs showed poor reversibility towards vapor of the good solvent dichloromethane due to strong interactions between polymers and vapor. In the vapor of the poor solvent cyclohexane, CPCs with higher PS content showed increased Rrel. After extraction of the PS component by cyclohexane, the sensing response was decreased and the Rrel of the co-continuous blend even reached negative values.
  • Item
    Bio-inspired deposition of electrochemically exfoliated graphene layers for electrical resistance heating applications
    (Bristol : IOP Publishing, 2020-12-4) Utech, Toni; Pötschke, Petra; Simon, Frank; Janke, Andreas; Kettner, Hannes; Paiva, Maria; Zimmerer, Cordelia
    Electrochemically exfoliated graphene (eeG) layers possess a variety of potential applications, e.g. as susceptor material for contactless induction heating in dynamic electro-magnetic fields, and as flexible and transparent electrode or resistivity heating elements. Spray coating of eeG dispersions was investigated in detail as a simple and fast method to deposit both, thin conducting layers and ring structures on polycarbonate substrates. The spray coating process was examined by systematic variation of dispersion concentration and volume applied to heated substrates. Properties of the obtained layers were characterized by UV-VIS spectroscopy, SEM and Confocal Scanning Microscopy. Electrical conductivity of eeG ring structures was measured using micro-four-point measurements. Modification of eeG with poly(dopamine) and post-thermal treatment yields in the reduction of the oxidized graphene proportion, an increase in electrical conductivity, and mechanical stabilization of the deposited thin layers. The chemical composition of modified eeG layer was analyzed via x-ray photoelectron spectroscopy pointing to the reductive behavior of poly(dopamine). Application oriented experiments demonstrate the direct electric current heating (Joule-Heating) effect of spray-coated eeG layers.
  • Item
    A promising approach to low electrical percolation threshold in PMMA nanocomposites by using MWCNT-PEO predispersions
    (Oxford : Elsevier Science, 2016) Mir, Seyed Mohammad; Jafari, Seyed Hassan; Khonakdar, Hossein Ali; Krause, Beate; Pötschke, Petra; Taheri Qazvini, Nader
    Electrical conductive poly(methyl methacrylate) (PMMA) nanocomposites with low percolation threshold are very challenging to be prepared. Here, we show that the miscibility between poly(ethylene oxide) (PEO) as matrix for predispersions of multi-walled carbon nanotubes (MWCNTs) and PMMA represents an efficient approach to achieve very low electrical percolation threshold. PMMA/PEO-MWCNTs nanocomposites were prepared by a two-step solution casting method involving pre-mixing of MWCNTs with PEO and then mixing of PEO-MWCNTs with PMMA, resulting in a PMMA/PEO ratio of 80/20 wt%. The electrical percolation threshold (EPT) value was determined to be ~ 0.07 wt% which is significantly lower than most of the reported EPT values in the literature for PMMA/CNT composites. The very low electrical percolation threshold was attributed to the effectual role of PEO in self-assembly of secondary structures of nanotubes into an electrically conductive network. This was further confirmed by transmission electron microscopy and by comparing the obtained EPT value with the prediction of the excluded volume model in which statistical percolation threshold is defined based on uniform distribution of high-aspect ratio sticks in a matrix. Moreover, based on UV–Vis measurements and linear viscoelastic rheological measurements, optical and rheological percolation thresholds were obtained at nearly 0.01 wt% and 0.5 wt%, respectively.
  • Item
    Extruded polycarbonate/Di-Allyl phthalate composites with ternary conductive filler system for bipolar plates of polymer electrolyte membrane fuel cells
    (Bristol : IOP Publ., 2019) Naji, Ahmed; Krause, Beate; Pötschke, Petra; Ameli, Amir
    Here, we report multifunctional polycarbonate (PC)-based conductive polymer composites (CPCs) with outstanding performance manufactured by a simple extrusion process and intended for use in bipolar plate (BPP) applications in polymer electrolyte membrane (PEM) fuel cells. CPCs were developed using a ternary conductive filler system containing carbon nanotube (CNT), carbon fiber (CF), and graphite (G) and by introducing di-allyl phthalate (DAP) as a plasticizer to PC matrix. The samples were fabricated using twin-screw extrusion followed by compression molding and the microstructure, electrical conductivity, thermal conductivity, and mechanical properties were investigated. The results showed a good dispersion of the fillers with some degree of interconnection between dissimilar fillers. The addition of DAP enhanced the electrical conductivity and tensile strength of the CPCs. Due to its plasticizing effect, DAP reduced the processing temperature by 75 °C and facilitated the extrusion of CPCs with filler loads as high as 63 wt% (3 wt% CNT, 30 wt% CF, 30 wt% G). Consequently, CPCs with the through-plane electrical, in-plane electrical and thermal conductivities and tensile strength of 4.2 S cm-1, 34.3 S cm-1, 2.9 W m-1 K-1, and 75.4 MPa, respectively, were achieved. This combination of properties indicates the potential of PC-based composites enriched with hybrid fillers and plasticizers as an alternative material for BPP application.