Search Results

Now showing 1 - 3 of 3
  • Item
    Toward light‐regulated living biomaterials
    (Hoboken, NJ : Wiley, 2018) Sankaran, Shrikrishnan; Zhao, Shifang; Muth, Christina; Paez, Julieta; Del Campo, Aránzazu
    Living materials are an emergent material class, infused with the productive,adaptive, and regenerative properties of living organisms. Property regulation in living materials requires encoding responsive units in the living components to allow external manipulation of their function. Here, an optoregulated Escherichia coli (E. coli)-based living biomaterial that can be externally addressed using light to interact with mammalian cells is demonstrated. This is achieved by using a photoactivatable inducer of gene expression and bacterial surface display technology to present an integrin-specific miniprotein on the outer membrane of an endotoxin-free E. coli strain. Hydrogel surfaces functionalized with the bacteria can expose cell adhesive molecules upon in situ light-activation, and trigger cell adhesion. Surface immobilized bacteria are able to deliver a fluorescent protein to the mammalian cells with which they are interacting, indicating the potential of such a bacterial material to deliver molecules to cells in a targeted manner.
  • Item
    Photoactivatable Hsp47: A tool to control and regulate collagen secretion & assembly
    (Hoboken, NJ : Wiley, 2018) Khan, Essak; Sankaran, Shrikrishnan; Paez, Julieta; Muth, Christina; Han, Mitchell; Del Campo, Aránzazu
    Collagen is the most abundant structural protein in mammals and is crucial for the mechanical integrity of tissues. Hsp47, an endoplasmic reticulum resident collagen-specific chaperone, is involved in collagen biosynthesis and plays a fundamental role in the folding, stability, and intracellular transport of procollagen triple helices. This work reports on a photoactivatable derivative of Hsp47 that allows regulation of collagen biosynthesis within mammalian cells using light. Photoactivatable Hsp47 contains a non-natural light-responsive tyrosine (o-nitro benzyl tyrosine (ONBY)) at Tyr383 position of the protein sequence. This mutation renders Hsp47 inactive toward collagen binding. The inactive, photoactivatable protein is easily uptaken by cells within a few minutes of incubation, and accumulated at the endoplasmic reticulum via retrograde KDEL receptor-mediated uptake. Upon light exposure, the photoactivatable Hsp47 turns into functional Hsp47 in situ. The increased intracellular concentration of Hsp47 results in stimulated secretion of collagen. The ability to promote collagen synthesis on demand, with spatiotemporal resolution, and in diseased state cells is demonstrated in vitro. It is envisioned that photoactivatable Hsp47 allows unprecedented fundamental studies of collagen biosynthesis, matrix biology, and inspires new therapeutic concepts in biomedicine and tissue regeneration.
  • Item
    Photoactivatable Hsp47: A tool to control and regulate collagen secretion & assembly
    (ChemRxiv, 2018) Khan, Essak; Sankaran, Shrikrishnan; Paez, Julieta; Muth, Christina; Han, Mitchell; del Campo, Aránzazu
    Hsp47 is a chaperone protein with a fundamental role in the folding, stability and intracellular transport of procollagen triple helices. A light-responsive Hsp47 recombinant protein, engineered to control in situ the production and assembly of cellular collagen is here demonstrated. This novel light-driven tool enables unprecedented fundamental studies of collagen biosynthesis and associated diseases.