Search Results

Now showing 1 - 2 of 2
  • Item
    Growth of PdCoO2 films with controlled termination by molecular-beam epitaxy and determination of their electronic structure by angle-resolved photoemission spectroscopy
    (Melville, NY : AIP Publ., 2022) Song, Qi; Sun, Jiaxin; Parzyck, Christopher T.; Miao, Ludi; Xu, Qing; Hensling, Felix V. E.; Barone, Matthew R.; Hu, Cheng; Kim, Jinkwon; Faeth, Brendan D.; Paik, Hanjong; King, Phil D. C.; Shen, Kyle M.; Schlom, Darrell G.
    Utilizing the powerful combination of molecular-beam epitaxy (MBE) and angle-resolved photoemission spectroscopy (ARPES), we produce and study the effect of different terminating layers on the electronic structure of the metallic delafossite PdCoO2. Attempts to introduce unpaired electrons and synthesize new antiferromagnetic metals akin to the isostructural compound PdCrO2 have been made by replacing cobalt with iron in PdCoO2 films grown by MBE. Using ARPES, we observe similar bulk bands in these PdCoO2 films with Pd-, CoO2-, and FeO2-termination. Nevertheless, Pd- and CoO2-terminated films show a reduced intensity of surface states. Additionally, we are able to epitaxially stabilize PdFexCo1-xO2 films that show an anomaly in the derivative of the electrical resistance with respect to temperature at 20 K, but do not display pronounced magnetic order.
  • Item
    Adsorption-controlled growth of La-doped BaSnO3 by molecular-beam epitaxy
    (Melville, NY : AIP Publ., 2017) Paik, Hanjong; Chen, Zhen; Lochocki, Edward; Seidner H., Ariel; Verma, Amit; Tanen, Nicholas; Park, Jisung; Uchida, Masaki; Shang, ShunLi; Zhou, Bi-Cheng; Brützam, Mario; Uecker, Reinhard; Liu, Zi-Kui; Jena, Debdeep; Shen, Kyle M.; Muller, David A.; Schlom, Darrell G.
    Epitaxial La-doped BaSnO3 films were grown in an adsorption-controlled regime by molecular-beam epitaxy, where the excess volatile SnOx desorbs from the film surface. A film grown on a (001) DyScO3 substrate exhibited a mobility of 183 cm2 V-1 s-1 at room temperature and 400 cm2 V-1 s-1 at 10 K despite the high concentration (1.2 × 1011 cm-2) of threading dislocations present. In comparison to other reports, we observe a much lower concentration of (BaO)2 Ruddlesden-Popper crystallographic shear faults. This suggests that in addition to threading dislocations, other defects - possibly (BaO)2 crystallographic shear defects or point defects - significantly reduce the electron mobility.