Search Results

Now showing 1 - 2 of 2
  • Item
    Cononsolvency of the responsive polymer poly(N-isopropylacrylamide) in water/methanol mixtures: a dynamic light scattering study of the effect of pressure on the collective dynamics
    (Berlin ; Heidelberg : Springer, 2022) Niebuur, Bart-Jan; Deyerling, André; Höfer, Nicole; Schulte, Alfons; Papadakis, Christine M.
    The collective dynamics of 25 wt% poly(N-isopropylacrylamide) (PNIPAM) solutions in water or an 80:20 v/v water/methanol mixture are investigated in the one-phase region in dependence on pressure and temperature using dynamic light scattering. Throughout, two dynamic modes are observed, the fast one corresponding to the relaxation of the chain segments within the polymer blobs and the slow one to the relaxation of the blobs. A pressure scan in the one-phase region on an aqueous solution at 34.0 °C, i.e., slightly below the maximum of the coexistence line, reveals that the dynamic correlation length of the fast mode increases when the left and the right branch of the coexistence line are approached. Thus, the chains are rather swollen far away from the coexistence line, but contracted near the phase transition. Temperature scans of solutions in neat H2O or in H2O/CD3OD at 0.1, 130, and 200 MPa reveal that the dynamic correlation length of the fast mode shows critical behavior. However, the critical exponents are significantly larger than the value predicted by mean-field theory for the static correlation length, ν = 0.5, and the exponent is significantly larger for the solution in the H2O/CD3OD mixture than in neat H2O.
  • Item
    Highly Tunable Nanostructures in a Doubly pH-Responsive Pentablock Terpolymer in Solution and in Thin Films
    (Weinheim : Wiley-VCH, 2021) Jung, Florian A.; Schart, Maximilian; Bührend, Lukas; Meidinger, Elisabeth; Kan, Jia-Jhen; Niebuur, Bart-Jan; Ariaee, Sina; Molodenskiy, Dmitry S.; Posselt, Dorthe; Amenitsch, Heinz; Tsitsilianis, Constantinos; Papadakis, Christine M.
    Multiblock copolymers with charged blocks are complex systems that show great potential for enhancing the structural control of block copolymers. A pentablock terpolymer PMMA-b-PDMAEMA-b-P2VP-b-PDMAEMA-b-PMMA is investigated. It contains two types of midblocks, which are weak cationic polyelectrolytes, namely poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) and poly(2-vinylpyridine) (P2VP). Furthermore, these are end-capped with short hydrophobic poly(methyl methacrylate) (PMMA) blocks in dilute aqueous solution and thin films. The self-assembly behavior depends on the degrees of ionization α of the P2VP and PDMAEMA blocks, which are altered in a wide range by varying the pH value. High degrees of ionization of both blocks prevent structure formation, whereas microphase-separated nanostructures form for a partially charged and uncharged state. While in solutions, the nanostructure formation is governed by the dependence of the P2VP block solubility of the and the flexibility of the PDMAEMA blocks on α, in thin films, the dependence of the segregation strength on α is key. Furthermore, the solution state plays a crucial role in the film formation during spin-coating. Overall, both the mixing behavior of the 3 types of blocks and the block sequence, governing the bridging behavior, result in strong variations of the nanostructures and their repeat distances.