Search Results

Now showing 1 - 2 of 2
  • Item
    Dualization and automatic distributed parameter selection of total generalized variation via bilevel optimization
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2020) Hintermüller, Michael; Papafitsoros, Kostas; Rautenberg, Carlos N.; Sun, Hongpeng
    Total Generalized Variation (TGV) regularization in image reconstruction relies on an infimal convolution type combination of generalized first- and second-order derivatives. This helps to avoid the staircasing effect of Total Variation (TV) regularization, while still preserving sharp contrasts in images. The associated regularization effect crucially hinges on two parameters whose proper adjustment represents a challenging task. In this work, a bilevel optimization framework with a suitable statistics-based upper level objective is proposed in order to automatically select these parameters. The framework allows for spatially varying parameters, thus enabling better recovery in high-detail image areas. A rigorous dualization framework is established, and for the numerical solution, two Newton type methods for the solution of the lower level problem, i.e. the image reconstruction problem, and two bilevel TGV algorithms are introduced, respectively. Denoising tests confirm that automatically selected distributed regularization parameters lead in general to improved reconstructions when compared to results for scalar parameters.
  • Item
    Generating structured non-smooth priors and associated primal-dual methods
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2019) Hintermüller, Michael; Papafitsoros, Kostas
    The purpose of the present chapter is to bind together and extend some recent developments regarding data-driven non-smooth regularization techniques in image processing through the means of a bilevel minimization scheme. The scheme, considered in function space, takes advantage of a dualization framework and it is designed to produce spatially varying regularization parameters adapted to the data for well-known regularizers, e.g. Total Variation and Total Generalized variation, leading to automated (monolithic), image reconstruction workflows. An inclusion of the theory of bilevel optimization and the theoretical background of the dualization framework, as well as a brief review of the aforementioned regularizers and their parameterization, makes this chapter a self-contained one. Aspects of the numerical implementation of the scheme are discussed and numerical examples are provided.