Search Results

Now showing 1 - 3 of 3
  • Item
    Gas plasma-conditioned ringer’s lactate enhances the cytotoxic activity of cisplatin and gemcitabine in pancreatic cancer in vitro and in ovo
    (Basel : MDPI AG, 2020) Liedtke, Kim-Rouven; Freund, Eric; Hermes, Maraike; Oswald, Stefan; Heidecke, Claus-Dieter; Partecke, Lars-Ivo; Bekeschus, Sander
    Pancreatic cancer is one of the most aggressive tumor entities. Diffuse metastatic infiltration of vessels and the peritoneum restricts curative surgery. Standard chemotherapy protocols include the cytostatic drug gemcitabine with limited efficacy at considerable toxicity. In search of a more effective and less toxic treatment modality, we tested in human pancreatic cancer cells (MiaPaca and PaTuS) a novel combination therapy consisting of cytostatic drugs (gemcitabine or cisplatin) and gas plasma-conditioned Ringer’s lactate that acts via reactive oxygen species. A decrease in metabolic activity and viability, change in morphology, and cell cycle arrest was observed in vitro. The combination treatment was found to be additively toxic. The findings were validated utilizing an in ovo tumor model of solid pancreatic tumors growing on the chorionallantois membrane of fertilized chicken eggs (TUM-CAM). The combination of the drugs (especially cisplatin) with the plasma-conditioned liquid significantly enhanced the anti-cancer effects, resulting in the induction of cell death, cell cycle arrest, and inhibition of cell growth with both of the cell lines tested. In conclusion, our novel combination approach may be a promising new avenue to increase the tolerability and efficacy of locally applied chemotherapeutic in diffuse metastatic peritoneal carcinomatosis of the pancreas. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Platelets are key in cold physical plasma-facilitated blood coagulation in mice
    (Amsterdam [u.a.] : Elsevier, 2017) Bekeschus, Sander; Brüggemeier, Janik; Hackbarth, Christine; Woedtke, Thomas von; Partecke, Lars-Ivo; van der Linde, Julia
    Purpose: Surgical interventions inevitably lead to destruction of blood vessels. This is especially dangerous in anticoagulated patients. Electrocauterization is a frequently used technique to seal incised tissue. However, leading to a superficial layer of necrotic tissue, the treated area evolves a high vulnerability to contact, making it prone to detachment. As a result, dangerous postoperative bleeding may occur. Cold physical plasma was previously suggested as a pro-coagulant treatment method. It mainly acts by expelling a delicate mixture of oxidants. We therefore tested the suitability of an atmospheric pressure plasma jet (kINPen MED) as a new medical device for sufficient blood coagulation in a murine model of liver incision. Methods: Plasma treatment of murine blood ex vivo induced sufficient coagula. This effect did not affect any tested parameter of plasmatic coagulation cascade, suggesting the mechanism to be related to cellular coagulation. Indeed, isolated platelets were significantly activated following exposure to plasma, although this effect was less pronounced in whole blood. To analyze the biological effect of plasma-on blood coagulation in vivo, mice were anticoagulated (clopidogrel inhibiting cellular and rivaroxaban inhibiting plasmatic hemostasis) or received vehicle only. Afterwards, a partial resection of the left lateral liver lobe was performed. The quantification of the blood loss after liver incision followed by treatment with kINPen MED plasma or electrocauterization revealed a similar and significant hemostatic performance in native and rivaroxaban but not clopidogrel-treated animals compared to argon gas-treated controls. In contrast to electrocauterization, kINPen MED plasma treatment did not cause necrotic cell layers. Conclusion: Our results propose a prime importance of platelets in cold physical plasma-mediated hemostasis and suggest a clinical benefit of kINPen MED plasma treatment as coagulation device in liver surgery.
  • Item
    Risk assessment of kINPen plasma treatment of four human pancreatic cancer cell lines with respect to metastasis
    (Basel : MDPI AG, 2019) Bekeschus, Sander; Freund, Eric; Spadola, Chiara; Privat-Maldonado, Angela; Hackbarth, Christine; Bogaerts, Annemie; Schmidt, Anke; Wende, Kristian; Weltmann, Klaus-Dieter; Woedtke, Thomas von; Heidecke, Claus-Dieter; Partecke, Lars-Ivo; Käding, André
    Cold physical plasma has limited tumor growth in many preclinical models and is, therefore, suggested as a putative therapeutic option against cancer. Yet, studies investigating the cells’ metastatic behavior following plasma treatment are scarce, although being of prime importance to evaluate the safety of this technology. Therefore, we investigated four human pancreatic cancer cell lines for their metastatic behavior in vitro and in chicken embryos (in ovo). Pancreatic cancer was chosen as it is particularly metastatic to the peritoneum and systemically, which is most predictive for outcome. In vitro, treatment with the kINPen plasma jet reduced pancreatic cancer cell activity and viability, along with unchanged or decreased motility. Additionally, the expression of adhesion markers relevant for metastasis was down-regulated, except for increased CD49d. Analysis of 3D tumor spheroid outgrowth showed a lack of plasma-spurred metastatic behavior. Finally, analysis of tumor tissue grown on chicken embryos validated the absence of an increase of metabolically active cells physically or chemically detached with plasma treatment. We conclude that plasma treatment is a safe and promising therapeutic option and that it does not promote metastatic behavior in pancreatic cancer cells in vitro and in ovo. © 2019 by the authors.