Search Results

Now showing 1 - 7 of 7
  • Item
    Plasma treatment limits cutaneous squamous cell carcinoma development in vitro and in vivo
    (Basel : MDPI AG, 2020) Pasqual-Melo, Gabriella; Nascimento, Thiago; Sanches, Larissa Juliani; Blegniski, Fernanda Paschoal; Bianchi, Julya Karen; Sagwal, Sanjeev Kumar; Berner, Julia; Schmidt, Anke; Emmert, Steffen; Weltmann, Klaus-Dieter; Woedtke, Thomas von; Gandhirajan, Rajesh Kumar; Cecchini, Alessandra Lourenço; Bekeschus, Sander
    Cutaneous squamous cell carcinoma (SCC) is the most prevalent cancer worldwide, increasing the cost of healthcare services and with a high rate of morbidity. Its etiology is linked to chronic ultraviolet (UV) exposure that leads to malignant transformation of keratinocytes. Invasive growth and metastasis are severe consequences of this process. Therapy-resistant and highly aggressive SCC is frequently fatal, exemplifying the need for novel treatment strategies. Cold physical plasma is a partially ionized gas, expelling therapeutic doses of reactive oxygen and nitrogen species that were investigated for their anticancer capacity against SCC in vitro and SCC-like lesions in vivo. Using the kINPen argon plasma jet, a selective growth-reducing action of plasma treatment was identified in two SCC cell lines in 2D and 3D cultures. In vivo, plasma treatment limited the progression of UVB-induced SSC-like skin lesions and dermal degeneration without compromising lesional or non-lesional skin. In lesional tissue, this was associated with a decrease in cell proliferation and the antioxidant transcription factor Nrf2 following plasma treatment, while catalase expression was increased. Analysis of skin adjacent to the lesions and determination of global antioxidant parameters confirmed the local but not systemic action of the plasma anticancer therapy in vivo. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Targeting malignant melanoma with physical plasmas
    (Amsterdam [u.a.] : Elsevier, 2018) Pasqual-Melo, Gabriella; Gandhirajan, Rajesh Kumar; Stoffels, Ingo; Bekeschus, Sander
    Melanoma is the deadliest form of cutaneous neoplasia. With a five-year survival rate of only 5–19%, metastatic melanoma presents severe challenges in clinical therapies. In addition, palliation is often problematic due to large numbers of fast growing metastasis. This calls for new therapeutic avenues targeting highly aggressive melanoma in palliative patients. One recently suggested innovative approach for eradication of topical tumor lesions is the application of cold physical plasma. This partially ionized gas emits a cocktail of reactive oxygen and nitrogen species (ROS/RNS). ROS/RNS have been shown to be a double-edged sword in fueling cancer growth at low doses but abrogating it at higher doses. The ROS/RNS output of plasma devices is tunable, and many studies have successfully decreased cancer cell growth in vitro and tumor burden in vivo. In general, increasing numbers of clinical trials suggest combination therapies to outperform monotherapies with regard to prognosis in patients. This review describes current challenges in melanoma treatment and highlights the concept of plasma therapy in experimental studies performed in melanoma research. Future perspectives are given that combine the usage of physical plasma with e.g. chemotherapy, immunotherapy, and ionizing radiation in melanoma medical oncology.
  • Item
    Combination of chemotherapy and physical plasma elicits melanoma cell death via upregulation of SLC22A16
    (London [u.a.] : Nature Publishing Group, 2018-12-5) Sagwal, Sanjeev Kumar; Pasqual-Melo, Gabriella; Bodnar, Yana; Gandhirajan, Rajesh Kumar; Bekeschus, Sander
    Malignant melanoma is an aggressive cancer that develops drug resistance leading to poor prognosis. Efficient delivery of chemotherapeutic drugs to the tumor tissue remains a major challenge in treatment regimens. Using murine (B16) and human (SK-MEL-28) melanoma cells, we investigated traditional cytotoxic agents in combination with cold physical plasma-derived oxidants. We report synergistic cytotoxicity of doxorubicin and epirubicin, and additive toxicity of oxaliplatin with plasma exposure in coefficient of drug interaction analysis. The combination treatment led to an increased DNA damage response (increased phosphorylation of ATM, γ-H2AX foci, and micronuclei formation). There was also an enhanced secretion of immunogenic cell death markers ATP and CXCL10 in cell culture supernatants following combination treatment. The observed synergistic effects in tumor cells was due to enhanced intracellular doxorubicin accumulation via upregulation of the organic cationic transporter SLC22A16 by plasma treatment. The doxorubicin uptake was reversed by pretreating cells with antioxidants or calcium influx inhibitor BTP2. Endoribonuclease-prepared siRNAs (esiRNA)-mediated knockdown of SLC22A16 inhibited the additive cytotoxic effect in tumor cells. SK-MEL 28 and THP-1 monocytes co-culture led to greater THP-1 cell migration and SK-MEL-28 cytotoxicity when compared with controls. Taken together, we propose pro-oxidant treatment modalities to sensitize chemoresistant melanoma cells towards subsequent chemotherapy, which may serve as therapeutic strategy in combination treatment in oncology.
  • Item
    Combination of Gas Plasma and Radiotherapy Has Immunostimulatory Potential and Additive Toxicity in Murine Melanoma Cells In Vitro
    (Basel : Molecular Diversity Preservation International, 2020) Pasqual-Melo, Gabriella; Sagwal, Sanjeev Kumar; Freund, Eric; Gandhirajan, Rajesh Kumar; Frey, Benjamin; von Woedtke, Thomas; Gaipl, Udo; Bekeschus, Sander
    Despite continuous advances in therapy, malignant melanoma is still among the deadliest types of cancer. At the same time, owing to its high plasticity and immunogenicity, melanoma is regarded as a model tumor entity when testing new treatment approaches. Cold physical plasma is a novel anticancer tool that utilizes a plethora of reactive oxygen species (ROS) being deposited on the target cells and tissues. To test whether plasma treatment would enhance the toxicity of an established antitumor therapy, ionizing radiation, we combined both physical treatment modalities targeting B16F10 murine melanoma cell in vitro. Repeated rather than single radiotherapy, in combination with gas plasma-introduced ROS, induced apoptosis and cell cycle arrest in an additive fashion. In tendency, gas plasma treatment sensitized the cells to subsequent radiotherapy rather than the other way around. This was concomitant with increased levels of TNFa, IL6, and GM-CSF in supernatants. Murine JAWS dendritic cells cultured in these supernatants showed an increased expression of cell surface activation markers, such as MHCII and CD83. For PD-L1 and PD-L2, increased expression was observed. Our results are the first to suggest an additive therapeutic effect of gas plasma and radiotherapy, and translational tumor models are needed to develop this concept further. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Low-Dose Oxidant Toxicity and Oxidative Stress in Human Papillary Thyroid Carcinoma Cells K1
    (Basel : MDPI, 2022) Lens, Hannah Hamada Mendonça; Lopes, Natália Medeiros Dias; Pasqual-Melo, Gabriella; Marinello, Poliana Camila; Miebach, Lea; Cecchini, Rubens; Bekeschus, Sander; Cecchini, Alessandra Lourenço
    Medical gas plasmas are of emerging interest in pre-clinical oncological research. Similar to an array of first-line chemotherapeutics and physics-based therapies already approved for clinical application, plasmas target the tumor redox state by generating a variety of highly reactive species eligible for local tumor treatments. Considering internal tumors with limited accessibility, medical gas plasmas help to enrich liquids with stable, low-dose oxidants ideal for intratumoral injection and lavage. Pre-clinical investigation of such liquids in numerous tumor entities and models in vitro and in vivo provided evidence of their clinical relevance, broadening the range of patients that could benefit from medical gas plasma therapy in the future. Likewise, the application of such liquids might be promising for recurrent BRAF(V600E) papillary thyroid carcinomas, resistant to adjuvant administration of radioiodine. From a redox biology point of view, studying redox-based approaches in thyroid carcinomas is particularly interesting, as they evolve in a highly oxidative environment requiring the capability to cope with large amounts of ROS/RNS. Knowledge on their behavior under different redox conditions is scarce. The present study aimed to clarify resistance, proliferative activity, and the oxidative stress response of human papillary thyroid cancer cells K1 after exposure to plasma-oxidized DMEM (oxDMEM). Cellular responses were also evaluated when treated with different dosages of hydrogen peroxide and the RNS donor sodium nitroprusside (SNP). Our findings outline plasma-oxidized liquids as a promising approach targeting BRAF(V600E) papillary thyroid carcinomas and extend current knowledge on the susceptibility of cells to undergo ROS/RNS-induced cell death.
  • Item
    The Anticancer Efficacy of Plasma-Oxidized Saline (POS) in the Ehrlich Ascites Carcinoma Model In Vitro and In Vivo
    (Basel : MDPI, 2021) Brito, Walison Augusto Silva; Freund, Eric; Nascimento, Thiago Daniel Henrique do; Pasqual-Melo, Gabriella; Sanches, Larissa Juliani; Dionísio, Joyce Hellen Ribeiro; Fumegali, William Capellari; Miebach, Lea; Cecchini, Alessandra Lourenço; Bekeschus, Sander
    Cold physical plasma, a partially ionized gas rich in reactive oxygen species (ROS), is receiving increasing interest as a novel anticancer agent via two modes. The first involves its application to cells and tissues directly, while the second uses physical plasma-derived ROS to oxidize liquids. Saline is a clinically accepted liquid, and here we explored the suitability of plasma-oxidized saline (POS) as anticancer agent technology in vitro and in vivo using the Ehrlich Ascites Carcinoma (EAC) model. EAC mainly grows as a suspension in the peritoneal cavity of mice, making this model ideally suited to test POS as a putative agent against peritoneal carcinomatosis frequently observed with colon, pancreas, and ovarium metastasis. Five POS injections led to a reduction of the tumor burden in vivo as well as in a decline of EAC cell growth and an arrest in metabolic activity ex vivo. The treatment was accompanied by a decreased antioxidant capacity of Ehrlich tumor cells and increased lipid oxidation in the ascites supernatants, while no other side effects were observed. Oxaliplatin and hydrogen peroxide were used as controls and mediated better and worse outcomes, respectively, with the former but not the latter inducing profound changes in the inflammatory milieu among 13 different cytokines investigated in ascites fluid. Modulation of inflammation in the POS group was modest but significant. These results promote POS as a promising candidate for targeting peritoneal carcinomatosis and malignant ascites and suggest EAC to be a suitable and convenient model for analyzing innovative POS approaches and combination therapies.
  • Item
    Cytochrome C oxidase Inhibition and Cold Plasma-derived Oxidants Synergize in Melanoma Cell Death Induction
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2018-8-24) Gandhirajan, Rajesh Kumar; Rödder, Katrin; Bodnar, Yana; Pasqual-Melo, Gabriella; Emmert, Steffen; Griguer, Corinne E.; Weltmann, Klaus-Dieter; Bekeschus, Sander
    Despite striking advances in the treatment of metastasized melanoma, the disease is often still fatal. Attention is therefore paid towards combinational regimens. Oxidants endogenously produced in mitochondria are currently targeted in pre-clinical and clinical studies. Cytotoxic synergism of mitochondrial cytochrome c oxidase (CcO) inhibition in conjunction with addition of exogenous oxidants in 2D and 3D melanoma cell culture models were examined. Murine (B16) and human SK-MEL-28 melanoma cells exposed to low-dose CcO inhibitors (potassium cyanide or sodium azide) or exogenous oxidants alone were non-toxic. However, we identified a potent cytotoxic synergism upon CcO inhibition and plasma-derived oxidants that led to rapid onset of caspase-independent melanoma cell death. This was mediated by mitochondrial dysfunction induced by superoxide elevation and ATP depletion. This observation was validated by siRNA-mediated knockdown of COX4I1 in SK-MEL-28 cells with cytotoxicity in the presence of exogenous oxidants. Similar effects were obtained with ADDA 5, a recently identified specific inhibitor of CcO activity showing low toxicity in vivo. Human keratinocytes were not affected by this combinational treatment, suggesting selective effects on melanoma cells. Hence, targeting mitochondrial CcO activity in conjunction with exogenous pro oxidant therapies may constitute a new and effective melanoma treatment modality.