Search Results

Now showing 1 - 2 of 2
  • Item
    Chiral dichroism in bi-elliptical high-order harmonic generation
    (Bristol : IOP Publ., 2018-02-28) Ayuso, David; Decleva, Piero; Patchkovskii, Serguei; Smirnova, Olga
    The application of strong bi-elliptically polarized laser fields to the generation of high-order harmonics in organic molecules offers exceptional opportunities for chiral recognition and chiral discrimination. These fields are made by combining an elliptically polarized fundamental, typically in the infrared range, with its counter-rotating second harmonic. Here we present a theoretical study of the harmonic emission from the chiral molecule propylene oxide in bi-elliptical fields. Our calculations include, for the first time in such a complex system, accurate photorecomination matrix elements, evaluated using the static-exchange density functional theory method. We show that bi-elliptical light can induce strong chiral dichroism in the harmonic spectra of chiral molecules in a broad range of harmonic numbers and ellipticities.
  • Item
    Strong-field control and enhancement of chiral response in bi-elliptical high-order harmonic generation: an analytical model
    (Bristol : IOP Publ., 2018-05-30) Ayuso, David; Decleva, Piero; Patchkovskii, Serguei; Smirnova, Olga
    The generation of high-order harmonics in a medium of chiral molecules driven by intense bi-elliptical laser fields can lead to strong chiroptical response in a broad range of harmonic numbers and ellipticities (Ayuso et al 2018 J. Phys. B: At. Mol. Opt. Phys. 51 06LT01). Here we present a comprehensive analytical model that can describe the most relevant features arising in the high-order harmonic spectra of chiral molecules driven by strong bi-elliptical fields. Our model recovers the physical picture underlying chiral high-order harmonic generation (HHG) based on ultrafast chiral hole motion and identifies the rotationally invariant molecular pseudoscalars responsible for chiral dynamics. Using the chiral molecule propylene oxide as an example, we show that one can control and enhance the chiral response in bi-elliptical HHG by tailoring the driving field, in particular by tuning its frequency, intensity and ellipticity, exploiting a suppression mechanism of achiral background based on the linear Stark effect.