Search Results

Now showing 1 - 3 of 3
  • Item
    Dynamic maximum entropy reduction
    (Basel : MDPI AG, 2019) Klika, Václav; Pavelka, Michal; Vágner, Petr; Grmela, Miroslav
    Any physical system can be regarded on different levels of description varying by how detailed the description is. We propose a method called Dynamic MaxEnt (DynMaxEnt) that provides a passage from the more detailed evolution equations to equations for the less detailed state variables. The method is based on explicit recognition of the state and conjugate variables, which can relax towards the respective quasi-equilibria in different ways. Detailed state variables are reduced using the usual principle of maximum entropy (MaxEnt), whereas relaxation of conjugate variables guarantees that the reduced equations are closed. Moreover, an infinite chain of consecutive DynMaxEnt approximations can be constructed. The method is demonstrated on a particle with friction, complex fluids (equipped with conformation and Reynolds stress tensors), hyperbolic heat conduction and magnetohydrodynamics. © 2020 by the authors.
  • Item
    Multiscale thermodynamics of charged mixtures
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2020) Vágner, Petr; Pavelka, Michal; Esen, Oğul
    A multiscale theory of interacting continuum mechanics and thermodynamics of mixtures of fluids, electrodynamics, polarization and magnetization is proposed. The mechanical (reversible) part of the theory is constructed in a purely geometric way by means of semidirect products. This leads to a complex Hamiltonian system with a new Poisson bracket, which can be used in principle with any energy functional. The thermodynamic (irreversible) part is added as gradient dynamics, generated by derivatives of a dissipation potential, which makes the theory part of the GENERIC framework. Subsequently, Dynamic MaxEnt reductions are carried out, which lead to reduced GENERIC models for smaller sets of state variables. Eventually, standard engineering models are recovered as the low-level limits of the detailed theory. The theory is then compared to recent literature.
  • Item
    On compatibility of the natural configuration framework with general equation for non-equilibrium reversible-irreversible coupling (GENERIC): Derivation of anisotropic rate-type models
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2021) Pelech, Petr; Tůma, Karel; Pavelka, Michal; Šípka, Martin; Sýkora, Martin
    Within the framework of natural configurations developed by Rajagopal and Srinivasa, evolution within continuum thermodynamics is formulated as evolution of a natural configuration linked with the current configuration. On the other hand, withing the General Equation for Non-Equilibrium Reversible-Irreversible Coupling (GENERIC) framework, the evolution is split into Hamiltonian mechanics and (generalized) gradient dynamics. These seemingly radically different approaches have actually a lot in common and we show their compatibility on a wide range of models. Both frameworks are illustrated on isotropic and anisotropic rate-type fluid models. We propose an interpretation of the natural configurations within GENERIC and vice versa (when possible).