Search Results

Now showing 1 - 5 of 5
  • Item
    The dwarf galaxy satellite system of Centaurus A
    (Les Ulis : EDP Sciences, 2019) Müller, Oliver; Rejkuba, Marina; Pawlowski, Marcel S.; Ibata, Rodrigo; Lelli, Federico; Hilker, Michael; Jerjen, Helmut
    Dwarf galaxy satellite systems are essential probes to test models of structure formation, making it necessary to establish a census of dwarf galaxies outside of our own Local Group. We present deep FORS2 VI band images from the ESO Very Large Telescope (VLT) for 15 dwarf galaxy candidates in the Centaurus group of galaxies. We confirm nine dwarfs to be members of Cen A by measuring their distances using a Bayesian approach to determine the tip of the red giant branch luminosity. We have also fit theoretical isochrones to measure their mean metallicities. The properties of the new dwarfs are similar to those in the Local Group in terms of their sizes, luminosities, and mean metallicities. Within our photometric precision, there is no evidence of a metallicity spread, but we do observe possible extended star formation in several galaxies, as evidenced by a population of asymptotic giant branch stars brighter than the red giant branch tip. The new dwarfs do not show any signs of tidal disruption. Together with the recently reported dwarf galaxies by the complementary PISCeS survey, we study the luminosity function and 3D structure of the group. By comparing the observed luminosity function to the high-resolution cosmological simulation IllustrisTNG, we find agreement within a 90% confidence interval. However, Cen A seems to be missing its brightest satellites and has an overabundance of the faintest dwarfs in comparison to its simulated analogs. In terms of the overall 3D distribution of the observed satellites, we find that the whole structure is flattened along the line-of-sight, with a root-mean-square (rms) height of 130 kpc and an rms semi-major axis length of 330 kpc. Future distance measurements of the remaining dwarf galaxy candidates are needed to complete the census of dwarf galaxies in the Centaurus group.
  • Item
    The coherent motion of Cen A dwarf satellite galaxies remains a challenge for ΛcDM cosmology
    (Les Ulis : EDP Sciences, 2021) Müller, Oliver; Pawlowski, Marcel S.; Lelli, Federico; Fahrion, Katja; Rejkuba, Marina; Hilker, Michael; Kanehisa, Jamie; Libeskind, Noam; Jerjen, Helmut
    The plane-of-satellites problem is one of the most severe small-scale challenges for the standard Λ cold dark matter (ΛCDM) cosmological model: Several dwarf galaxies around the Milky Way and Andromeda co-orbit in thin, planar structures. A similar case has been identified around the nearby elliptical galaxy Centaurus A (Cen A). In this Letter, we study the satellite system of Cen A, adding twelve new galaxies with line-of-sight velocities from VLT/MUSE observations. We find that 21 out of 28 dwarf galaxies with measured velocities share a coherent motion. Similarly, flattened and coherently moving structures are found only in 0.2% of Cen A analogs in the Illustris-TNG100 cosmological simulation, independently of whether we use its dark-matter-only or hydrodynamical run. These analogs are not co-orbiting, and they arise only by chance projection, thus they are short-lived structures in such simulations. Our findings indicate that the observed co-rotating planes of satellites are a persistent challenge for ΛCDM, which is largely independent from baryon physics. © O. Müller et al. 2021.
  • Item
    Incorporating baryon-driven contraction of dark matter halos in rotation curve fits
    (Les Ulis : EDP Sciences, 2022) Li, Pengfei; McGaugh, Stacy S.; Lelli, Federico; Schombert, James M.; Pawlowski, Marcel S.
    The condensation of baryons within a dark matter (DM) halo during galaxy formation should result in some contraction of the halo as the combined system settles into equilibrium. We quantify this effect on the cuspy primordial halos predicted by DM-only simulations for the baryon distributions observed in the galaxies of the SPARC database. We find that the DM halos of high surface brightness galaxies (with Σeff 3; 100L pc-2 at 3.6 μm) experience strong contraction. Halos become more cuspy as a result of compression: the inner DM density slope increases with the baryonic surface mass density. We iteratively fit rotation curves to find the balance between initial halo parameters (constrained by abundance matching), compression, and stellar mass-to-light ratio. The resulting fits often require lower stellar masses than expected for stellar populations, particularly in galaxies with bulges: stellar mass must be reduced to make room for the DM it compresses. This trade off between dark and luminous mass is reminiscent of the cusp-core problem in dwarf galaxies, but occurs in more massive systems: the present-epoch DM halos cannot follow from cuspy primordial halos unless (1) the stellar mass-to-light ratios are systematically smaller than expected from standard stellar population synthesis models, and/or (2) there is a net outward mass redistribution from the initial cusp, even in massive galaxies widely considered to be immune from such effects.
  • Item
    Phase-Space Correlations among Systems of Satellite Galaxies
    (Basel : MDPI, 2021) Pawlowski, Marcel S.
    Driven by the increasingly complete observational knowledge of systems of satellite galaxies, mutual spatial alignments and relations in velocities among satellites belonging to a common host have become a productive field of research. Numerous studies have investigated different types of such phase-space correlations and were met with varying degrees of attention by the community. The Planes of Satellite Galaxies issue is maybe the best-known example, with a rich field of research literature and an ongoing, controversial debate on how much of a challenge it poses to the ΛCDM model of cosmology. Another type of correlation, the apparent excess of close pairs of dwarf galaxies, has received considerably less attention despite its reported tension with ΛCDM expectations. With the fast expansion of proper motion measurements in recent years, largely driven by the Gaia mission, other peculiar phase-space correlations have been uncovered among the satellites of the Milky Way. Examples are the apparent tangential velocity excess of satellites compared to cosmological expectations, and the unexpected preference of satellites to be close to their pericenters. At the same time, other kinds of correlations have been found to be more in line with cosmological expectations—specifically, lopsided satellite galaxy systems and the accretion of groups of satellite galaxies. The latter has mostly been studied in cosmological simulations thus far, but it offers the potential to address some of the other issues by providing a way to produce correlations among the orbits of a group’s satellite galaxy members. This review is the first to provide an introduction to the highly active field of phase-space correlations among satellite galaxy systems. The emphasis is on summarizing existing, recent research and highlighting interdependencies between the different, currently almost exclusively individually considered types of correlations. Future prospects in light of upcoming observational facilities and our ever-expanding knowledge of satellite galaxy systems beyond the Local Group are also briefly discussed
  • Item
    The Lopsided Distribution of Satellites of Isolated Central Galaxies
    (London : Institute of Physics Publ., 2021) Wang, Peng; Libeskind, Noam I.; Pawlowski, Marcel S.; Kang, Xi; Wang, Wei; Guo, Quan; Tempel, Elmo
    Satellites are not randomly distributed around their central galaxies but show polar and planar structures. In this paper, we investigate the axis asymmetry or lopsidedness of satellite galaxy distributions around isolated galaxies in a hydrodynamic cosmological simulation. We find a statistically significant lopsided signal by studying the angular distribution of the satellite galaxies' projected positions around isolated central galaxies in a two-dimensional plane. The signal is dependent on galaxy mass, color, and large-scale environment. Satellites that inhabit low-mass blue hosts, or located further from the hosts, show the most lopsided signal. Galaxy systems with massive neighbors exhibit stronger lopsidedness. This satellite axis-asymmetry signal also decreases as the universe evolves. Our findings are in agreement with recent observational results and they provide a useful perspective for studying galaxy evolution, especially on the satellite accretion, internal evolution, and interaction with the cosmic large-scale structure. © 2021. The Author(s). Published by the American Astronomical Society..