Search Results

Now showing 1 - 2 of 2
  • Item
    Establishment of a Laboratory Scale Set-Up with Controlled Temperature and High Humidity to Investigate Dry Matter Losses of Wood Chips from Poplar during Storage
    (Basel : MDPI, 2022) Hernandez-Estrada, Albert; Pecenka, Ralf; Dumfort, Sabrina; Ascher-Jenull, Judith; Lenz, Hannes; Idler, Christine; Hoffmann, Thomas
    The aim of this work was to improve the understanding of dry matter losses (DML) that occur in wood chips during the initial phase of storage in outdoor piles. For this purpose, a laboratory scale storage chamber was developed and investigated regarding its ability to recreate the conditions that chips undergo during the initial phase of outdoor storage. Three trials with poplar Max-4 (Populus maximowiczii Henry  Populus nigra L.) chips were performed for 6–10 weeks in the storage chamber under controlled temperature and assisted humidity. Two different setups were investigated to maintain a high relative humidity (RH) inside the storage chamber; one using water containers, and one assisted with a humidifier. Moisture content (MC) and DML of the chips were measured at different storage times to evaluate their storage behaviour in the chamber. Additionally, microbiological analyses of the culturable fraction of saproxylic microbiota were performed, with a focus on mesophilic fungi, but discriminating also xerophilic fungi, and mesophilic bacteria, with focus on actinobacteria, in two trials, to gain a view on the poplar wood chip-inhabiting microorganisms as a function of storage conditions (moisture, temperature) and time. Results show that DML up to 8.8–13.7% occurred in the chips within 6–10 storage weeks. The maximum DML were reached in the trial using the humidifier, which seemed a suitable technique to keep a high RH in the testing chamber, and thus, to analyse the wood chips in conditions comparable to those in outdoor piles during the initial storage phase.
  • Item
    Options for optimizing the drying process and reducing dry matter losses in whole-tree storage of poplar from short-rotation coppices in Germany
    (Basel : MDPI, 2020) Pecenka, Ralf; Lenz, Hannes; Hering, Thomas
    For sustainable production of wood in short-rotation coppices and agroforestry systems, it is necessary to optimize the storage processes to achieve low dry matter losses together with low-cost drying. The harvesting of the trees can be carried out very efficiently with modified forage harvesters or tractor-powered mower-chippers. The wood chips produced can be dried naturally at low cost in open-air piles. However, this type of storage is connected with high dry matter losses of up to about one fourth in the course of seven-month storage. Although harvesting whole trees is connected with significantly higher costs, lower dry matter losses are to be expected from storing the trees in piles. Consequently, in this study, the storage and drying behavior of poplar under different German weather conditions and depending on the structure of the storage piles has been examined in detail. After a seven-months storage period, the trees still displayed moisture contents of 41–44% following an initial moisture content of 56% but achieved very low dry matter losses of only 4–7%. Moisture contents of 35–39% could only be achieved in October after a further two-months drying period under favorable weather conditions. All storage piles were built up on approximately 30 cm high support timbers for better ventilation. Additionally, covering the ground with a fleece did not have any influence on the drying behavior, nor did different pile heights. Smaller tree trunk diameters are not only connected with a higher share of bark or ash, but also thinner trunks tend to become damp again more quickly after rainfall. That is why whole-tree storage is suitable above all for medium or longer rotation periods with which, under favorable conditions, the higher harvesting costs can be compensated by a higher wood chip quality and lower storage losses.