Search Results

Now showing 1 - 1 of 1
  • Item
    Detection of a 100,000 M-circle dot black hole in M31's Most Massive Globular Cluster: A Tidally Stripped Nucleus
    (London : Institute of Physics Publ., 2022) Pechetti, Renuka; Seth, Anil; Kamann, Sebastian; Caldwell, Nelson; Strader, Jay; den Brok, Mark; Luetzgendorf, Nora; Neumayer, Nadine; Voggel, Karina
    We investigate the presence of a central black hole (BH) in B023-G078, M31's most massive globular cluster. We present high-resolution, adaptive-optics assisted, integral-field spectroscopic kinematics from Gemini/NIFS that show a strong rotation (∼20 km s-1) and a velocity dispersion rise toward the center (37 km s-1). We combine the kinematic data with a mass model based on a two-component fit to HST ACS/HRC data of the cluster to estimate the mass of a putative BH. Our dynamical modeling suggests a >3σ detection of a BH component of (1σ uncertainties). The inferred stellar mass of the cluster is , consistent with previous estimates, thus the BH makes up 1.5% of its mass. We examine whether the observed kinematics are caused by a collection of stellar mass BHs by modeling an extended dark mass as a Plummer profile. The upper limit on the size scale of the extended mass is 0.56 pc (95% confidence), which does not rule out an extended mass. There is compelling evidence that B023-G078 is the tidally stripped nucleus of a galaxy with a stellar mass >109 M o˙, including its high-mass, two-component luminosity profile, color, metallicity gradient, and spread in metallicity. Given the emerging evidence that the central BH occupation fraction of >109 M o˙ galaxies is high, the most plausible interpretation of the kinematic data is that B023-G078 hosts a central BH. This makes it the strongest BH detection in a lower-mass (<107 M o˙) stripped nucleus, and one of the few dynamically detected intermediate-mass BHs.