Search Results

Now showing 1 - 2 of 2
  • Item
    “Surface,” “satellite” or “simulation”: Mapping intra-urban microclimate variability in a desert city
    (Chichester [u.a.] : Wiley, 2020) Zhou, Bin; Kaplan, Shai; Peeters, Aviva; Kloog, Itai; Erell, Evyatar
    Mapping spatial and temporal variability of urban microclimate is pivotal for an accurate estimation of the ever-increasing exposure of urbanized humanity to global warming. This particularly concerns cities in arid/semi-arid regions which cover two fifths of the global land area and are home to more than one third of the world's population. Focusing on the desert city of Be'er Sheva Israel, we investigate the spatial and temporal patterns of urban–rural and intra-urban temperature variability by means of satellite observation, vehicular traverse measurement, and computer simulation. Our study reveals a well-developed nocturnal canopy layer urban heat island in Be'er Sheva, particularly in the winter, but a weak diurnal cool island in the mid-morning. Near surface air temperature exhibits weak urban–rural and intra-urban differences during the daytime (<1°C), despite pronounced urban surface cool islands observed in satellite images. This phenomenon, also recorded in some other desert cities, is explained by the rapid increase in surface skin temperature of exposed desert soils (in the absence of vegetation or moisture) after sunrise, while urban surfaces are heated more slowly. The study highlights differences among the three methods used for describing urban temperature variability, each of which may have different applications in fields such as urban planning, climate change mitigation, and epidemiological research. © 2019 The Authors. International Journal of Climatology published by John Wiley & Sons Ltd on behalf of the Royal Meteorological Society.
  • Item
    Evaluating spatially resolved influence of soil and tree water status on quality of European plum grown in semi-humid climate
    (Lausanne : Frontiers Media, 2017) Käthner, Jana; Ben-Gal, Alon; Gebbers, Robin; Peeters, Aviva; Herppich, Werner B.; Zude-Sasse, Manuela
    In orchards, the variations of fruit quality and its determinants are crucial for resource effective measures. In the present study, a drip-irrigated plum production (Prunus domestica L. “Tophit plus”/Wavit) located in a semi-humid climate was studied. Analysis of the apparent electrical conductivity (ECa) of soil showed spatial patterns of sand lenses in the orchard. Water status of sample trees was measured instantaneously by means of leaf water potential, Ψleaf [MPa], and for all trees by thermal imaging of canopies and calculation of the crop water stress index (CWSI). Methods for determining CWSI were evaluated. A CWSI approach calculating canopy and reference temperatures from the histogram of pixels from each image itself was found to suit the experimental conditions. Soil ECa showed no correlation with specific leaf area ratio and cumulative water use efficiency (WUEc) derived from the crop load. The fruit quality, however, was influenced by physiological drought stress in trees with high crop load and, resulting (too) high WUEc, when fruit driven water demand was not met. As indicated by analysis of variance, neither ECa nor the instantaneous CWSI could be used as predictors of fruit quality, while the interaction of CWSI and WUEc did succeed in indicating significant differences. Consequently, both WUEc and CWSI should be integrated in irrigation scheduling for positive impact on fruit quality.