Search Results

Now showing 1 - 2 of 2
  • Item
    Passing to the limit in a Wasserstein gradient flow : from diffusion to reaction
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2011) Arnrich, Steffen; Mielke, Alexander; Peletier, Mark A.; Savar´e, Giuseppe; Veneroni, Marco
    We study a singular-limit problem arising in the modelling of chemical reactions. At finite e>0, the system is described by a Fokker-Planck convection-diffusion equation with a double-well convection potential. This potential is scaled by 1/e, and in the limit eto0, the solution concentrates onto the two wells, resulting into a limiting system that is a pair of ordinary differential equations for the density at the two wells. This convergence has been proved in Peletier, Savaré, and Veneroni, em SIAM Journal on Mathematical Analysis, 42(4):1805--1825, 2010, using the linear structure of the equation. In this paper we re-prove the result by using solely the Wasserstein gradient-flow structure of the system. In particular, we make no use of the linearity, nor of the fact that it is a second-order system. The first key step in this approach is a reformulation of the equation as the minimization of an action functional that captures the propety of being a emphcurve of maximal slope in an integrated form. The second important step is a rescaling of space. Using only the Wasserstein gradient-flow structure, we prove that the sequence of rescaled solutions is pre-compact in an appropriate topology. ...
  • Item
    Fast reaction limits via $Gamma$-convergence of the flux rate functional
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2020) Peletier, Mark A.; Renger, D. R. Michiel
    We study the convergence of a sequence of evolution equations for measures supported on the nodes of a graph. The evolution equations themselves can be interpreted as the forward Kolmogorov equations of Markov jump processes, or equivalently as the equations for the concentrations in a network of linear reactions. The jump rates or reaction rates are divided in two classes; `slow' rates are constant, and `fast' rates are scaled as 1/∈, and we prove the convergence in the fast-reaction limit ∈ → 0. We establish a Γ-convergence result for the rate functional in terms of both the concentration at each node and the flux over each edge (the level-2.5 rate function). The limiting system is again described by a functional, and characterizes both fast and slow fluxes in the system. This method of proof has three advantages. First, no condition of detailed balance is required. Secondly, the formulation in terms of concentration and flux leads to a short and simple proof of the Γ-convergence; the price to pay is a more involved compactness proof. Finally, the method of proof deals with approximate solutions, for which the functional is not zero but small, without any changes.