Search Results

Now showing 1 - 2 of 2
  • Item
    Brain Mechanisms of COVID-19-Sleep Disorders
    (Basel : Molecular Diversity Preservation International (MDPI), 2021) Semyachkina-Glushkovskaya, Oxana; Mamedova, Aysel; Vinnik, Valeria; Klimova, Maria; Saranceva, Elena; Ageev, Vasily; Yu, Tingting; Zhu, Dan; Penzel, Thomas; Kurths, Jürgen
    2020 and 2021 have been unprecedented years due to the rapid spread of the modified severe acute respiratory syndrome coronavirus around the world. The coronavirus disease 2019 (COVID-19) causes atypical infiltrated pneumonia with many neurological symptoms, and major sleep changes. The exposure of people to stress, such as social confinement and changes in daily routines, is accompanied by various sleep disturbances, known as ‘coronasomnia’ phenomenon. Sleep disorders induce neuroinflammation, which promotes the blood–brain barrier (BBB) disruption and entry of antigens and inflammatory factors into the brain. Here, we review findings and trends in sleep research in 2020–2021, demonstrating how COVID-19 and sleep disorders can induce BBB leakage via neuroinflammation, which might contribute to the ‘coronasomnia’ phenomenon. The new studies suggest that the control of sleep hygiene and quality should be incorporated into the rehabilitation of COVID-19 patients. We also discuss perspective strategies for the prevention of COVID-19-related BBB disorders. We demonstrate that sleep might be a novel biomarker of BBB leakage, and the analysis of sleep EEG patterns can be a breakthrough non-invasive technology for diagnosis of the COVID-19-caused BBB disruption.
  • Item
    Modified wavelet analysis of ECoG-pattern as promising tool for detection of the blood–brain barrier leakage
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2021) Runnova, Anastasiya; Zhuravlev, Maksim; Ukolov, Rodion; Blokhina, Inna; Dubrovski, Alexander; Lezhnev, Nikita; Sitnikova, Evgeniya; Saranceva, Elena; Kiselev, Anton; Karavaev, Anatoly; Selskii, Anton; Semyachkina-Glushkovskaya, Oxana; Penzel, Thomas; Kurths, Jurgen
    A new approach for detection oscillatory patterns and estimation of their dynamics based by a modified CWT skeleton method is presented. The method opens up additional perspectives for the analysis of subtle changes in the oscillatory activity of complex nonstationary signals. The method was applied to analyze unique experimental signals obtained in usual conditions and after the non-invasive increase in the blood–brain barrier (BBB) permeability in 10 male Wistar rats. The results of the wavelet-analysis of electrocorticography (ECoG) recorded in a normal physiological state and after an increase in the BBB permeability of animals demonstrate significant changes between these states during wakefulness of animals and an essential smoothing of these differences during sleep. Sleep is closely related to the processes of observed changes in the BBB permeability.