Search Results

Now showing 1 - 4 of 4
  • Item
    New Low-Melting Triply Charged Homoleptic Cr(III)-Based Ionic Liquids in Comparison to Their Singly Charged Heteroleptic Analogues
    (Basel : MDPI AG, 2021) Peppel, Tim; Köckerling, Martin
    A series of new low-melting triply charged homoleptic Cr(III)-based ionic liquids of the general formula (RMIm)3[Cr(NCS)6] (R = methyl, ethyl, n-butyl, benzyl) is reported. Their syntheses and properties are described in comparison to their singly charged heteroleptic analogues of the general formula (RMIm)[Cr(NCS)4L2] (R = methyl, ethyl, n-butyl, benzyl; L = pyridine, γ-picoline). In total, sixteen new Reineckate related salts with large imidazolium cations are described. Out of these, five compounds were crystallized, and their structures determined by single-crystal X-ray structure analyses. They all consisted of discrete anions and cations with octahedrally coordinated Cr(III) ions. In the structures, various hydrogen contacts interconnect the entities to build up hydrogen bonded networks. Thermal investigations showed relatively low melting points for the homoleptic complexes. The compounds with the [Cr(NCS)6]3− anion melt without decomposition and are stable up to 200 K above their melting points. The complex salts with the [Cr(NCS)4L2]− anion, in contrast, start to decompose and lose L molecules (Pyr or Pic) already at the melting point.
  • Item
    Low-melting manganese(II)-based ionic liquids: Syntheses, structures, properties and influence of trace impurities
    (Basel : MDPI, 2019) Peppel, Tim; Geppert-Rybczyńska, Monika; Neise, Christin; Kragl, Udo; Köckerling, Martin
    The synthesis of more than 10 new magnetic ionic liquids with [MnX4]2− anions, X = Cl, NCS, NCO, is presented. Detailed structural information through single-crystal X-ray diffraction is given for (DMDIm)[Mn(NCS)4], (BnEt3N)2[Mn(NCS)4], and {(Ph3P)2N}2[Mn(NCO4)]·0.6H2O, respectively. All compounds consist of discrete anions and cations with tetrahedrally coordinated Mn(II) atoms. They show paramagnetic behavior as expected for spin-only systems. Melting points are found for several systems below 100 °C classifying them as ionic liquids. Thermal properties are investigated using differential scanning calorimetry (DSC) measurements. The physicochemical properties of density, dynamic viscosity, electrolytic conductivity, and surface tension were measured temperature-dependent of selected samples. These properties are discussed in comparison to similar Co containing systems. An increasing amount of bromide impurity is found to affect the surface tension only up to 3.3%.
  • Item
    Combination of chemo- and biocatalysis: Conversion of biomethane to methanol and formic acid
    (Basel : MDPI, 2019) Kunkel, Benny; Seeburg, Dominik; Peppel, Tim; Stier, Matthias; Wohlrab, Sebastian
    In the present day, methanol is mainly produced from methane via reforming processes, but research focuses on alternative production routes. Herein, we present a chemo-/biocatalytic oxidation cascade as a novel process to currently available methods. Starting from synthetic biogas, in the first step methane was oxidized to formaldehyde over a mesoporous VOx/SBA-15 catalyst. In the second step, the produced formaldehyde was disproportionated enzymatically towards methanol and formic acid in equimolar ratio by formaldehyde dismutase (FDM) obtained from Pseudomonas putida. Two processing routes were demonstrated: (a) batch wise operation using free formaldehyde dismutase after accumulating formaldehyde from the first step and (b) continuous operation with immobilized enzymes. Remarkably, the chemo-/biocatalytic oxidation cascades generate methanol in much higher productivity compared to methane monooxygenase (MMO) which, however, directly converts methane. Moreover, production steps for the generation of formic acid were reduced from four to two stages. © 2019 by the authors.
  • Item
    Photocatalytic Reduction of CO2 by Metal-Free-Based Materials: Recent Advances and Future Perspective
    (Weinheim : Wiley-VCH, 2020) Shen, Huidong; Peppel, Tim; Strunk, Jennifer; Sun, Zhenyu
    Photocatalytic CO2 reduction to produce valuable chemicals and fuels using solar energy provides an appealing route to alleviate global energy and environmental problems. Searching for photocatalysts with high activity and selectivity for CO2 conversion is the key to achieving this goal. Among the various proposed photocatalysts, metal-free materials, such as graphene, nitrides, carbides, and conjugated organic polymers, have gained extensive research interest for photocatalytic CO2 reduction, due to their earth abundance, cost-effectiveness, good electrical conductivity, and environmental friendliness. They exhibit prominent catalytic activity, impressive selectivity, and long durability for the conversion of CO2 to solar fuels. Herein, the recent progress on metal-free photocatalysis of CO2 reduction is systematically reviewed. Opportunities and challenges on modification of nonmetallic catalysts to enhance CO2 transformation are presented. Theoretical calculations on possible reduction mechanisms and pathways as well as the potential in situ and operando techniques for mechanistic understanding are also summarized and discussed. Based on the aforementioned discussions, suitable future research directions and perspectives for the design and development of potential nonmetallic photocatalysts for efficient CO2 reduction are provided. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim