Search Results

Now showing 1 - 7 of 7
Loading...
Thumbnail Image
Item

Enhanced Concanavalin A Binding to Preorganized Mannose Nanoarrays in Glycodendrimersomes Revealed Multivalent Interactions

2021, Kostina, Nina Yu, Söder, Dominik, Haraszti, Tamás, Xiao, Qi, Rahimi, Khosrow, Partridge, Benjamin E., Klein, Michael L., Percec, Virgil, Rodriguez‐Emmenegger, Cesar

The effect of the two-dimensional glycan display on glycan-lectin recognition remains poorly understood despite the importance of these interactions in a plethora of cellular processes, in (patho)physiology, as well as its potential for advanced therapeutics. Faced with this challenge we utilized glycodendrimersomes, a type of synthetic vesicles whose membrane mimics the surface of a cell and offers a means to probe the carbohydrate biological activity. These single-component vesicles were formed by the self-assembly of sequence-defined mannose-Janus dendrimers, which serve as surrogates for glycolipids. Using atomic force microscopy and molecular modeling we demonstrated that even mannose, a monosaccharide, was capable of organizing the sugar moieties into periodic nanoarrays without the need of the formation of liquid-ordered phases as assumed necessary for rafts. Kinetics studies of Concanavalin A binding revealed that those nanoarrays resulted in a new effective ligand yielding a ten-fold increase in the kinetic and thermodynamic constant of association. © 2021 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH

Loading...
Thumbnail Image
Item

Design–functionality relationships for adhesion/growth-regulatory galectins

2019, Ludwig, Anna-Kristin, Michalak, Malwina, Xiao, Qi, Gilles, Ulrich, Medrano, Francisco J., Ma, Hanyue, FitzGerald, Forrest G., Hasley, William D., Melendez-Davila, Adriel, Liu, Matthew, Rahimi, Khosrow, Kostina, Nina Yu, Rodriguez-Emmenegger, Cesar, Möller, Martin, Lindner, Ingo, Kaltner, Herbert, Cudic, Mare, Reusch, Dietmar, Kopitz, Jürgen, Romero, Antonio, Oscarson, Stefan, Klein, Michael L., Gabius, Hans-Joachim, Percec, Virgil

Glycan-lectin recognition is assumed to elicit its broad range of (patho)physiological functions via a combination of specific contact formation with generation of complexes of distinct signal-triggering topology on biomembranes. Faced with the challenge to understand why evolution has led to three particular modes of modular architecture for adhesion/growth-regulatory galectins in vertebrates, here we introduce protein engineering to enable design switches. The impact of changes is measured in assays on cell growth and on bridging fully synthetic nanovesicles (glycodendrimersomes) with a chemically programmable surface. Using the example of homodimeric galectin-1 and monomeric galectin-3, the mutual design conversion caused qualitative differences, i.e., from bridging effector to antagonist/from antagonist to growth inhibitor and vice versa. In addition to attaining proof-of-principle evidence for the hypothesis that chimera-type galectin-3 design makes functional antagonism possible, we underscore the value of versatile surface programming with a derivative of the pan-galectin ligand lactose. Aggregation assays with N,N′-diacetyllactosamine establishing a parasite-like surface signature revealed marked selectivity among the family of galectins and bridging potency of homodimers. These findings provide fundamental insights into design-functionality relationships of galectins. Moreover, our strategy generates the tools to identify biofunctional lattice formation on biomembranes and galectin-reagents with therapeutic potential.

Loading...
Thumbnail Image
Item

Encapsulation of hydrophobic components in dendrimersomes and decoration of their surface with proteins and nucleic acids

2019, Torre, Paola, Xiao, Qi, Buzzacchera, Irene, Sherman, Samuel E., Rahimi, Khosrow, Kostina, Nina Yu., Rodriguez-Emmenegger, Cesar, Möller, Martin, Wilson, Christopher J., Klein, Michael L., Good, Matthew C., Percec, Virgil

Reconstructing the functions of living cells using nonnatural components is one of the great challenges of natural sciences. Compartmentalization, encapsulation, and surface decoration of globular assemblies, known as vesicles, represent key early steps in the reconstitution of synthetic cells. Here we report that vesicles self-assembled from amphiphilic Janus dendrimers, called dendrimersomes, encapsulate high concentrations of hydrophobic components and do so more efficiently than commercially available stealth liposomes assembled from phospholipid components. Multilayer onion-like dendrimersomes demonstrate a particularly high capacity for loading low-molecular weight compounds and even folded proteins. Coassembly of amphiphilic Janus dendrimers with metal-chelating ligands conjugated to amphiphilic Janus dendrimers generates dendrimersomes that selectively display folded proteins on their periphery in an oriented manner. A modular strategy for tethering nucleic acids to the surface of dendrimersomes is also demonstrated. These findings augment the functional capabilities of dendrimersomes to serve as versatile biological membrane mimics.

Loading...
Thumbnail Image
Item

Grafting of functional methacrylate polymer brushes by photoinduced SET-LRP

2016, Vorobii, Mariia, Pop-Georgievski, Ognen, de los Santos Pereira, Andres, Kostina, Nina Yu., Jezorek, Ryan, Sedláková, Zdeňka, Percec, Virgil, Rodriguez-Emmenegger, Cesar

Photoinduced surface-initiated single electron transfer living radical polymerization (SET-LRP) is a versatile technique for the preparation of polymer brushes. The vast diversity of compatible functional groups, together with a high end-group fidelity that enables precise control of the architecture, makes this approach an effective tool for tuning the properties of surfaces. We report the application of photoinduced SET-LRP for the surface-initiated grafting of polymer brushes from a wide range of methacrylate monomers for the first time. The living character of the process was demonstrated by the linear evolution of the polymer brush thickness in time, the ability to reinitiate the polymerization for the preparation of well-defined block copolymers, and also by X-ray photoelectron spectroscopy depth profiling. The surface patterning with these brushes could be achieved simply by restricting the irradiated area. The ability of poly(methacrylate) brushes prepared in this way to prevent non-specific protein adsorption is also demonstrated, indicating the suitability of this procedure for advanced applications.

Loading...
Thumbnail Image
Item

Screening Libraries of Amphiphilic Janus Dendrimers Based on Natural Phenolic Acids to Discover Monodisperse Unilamellar Dendrimersomes

2019, Buzzacchera, Irene, Xiao, Qi, Han, Hong, Rahimi, Khosrow, Li, Shangda, Kostina, Nina Yu, Toebes, B. Jelle, Wilner, Samantha E., Möller, Martin, Rodriguez-Emmenegger, Cesar, Baumgart, Tobias, Wilson, Daniela A., Wilson, Christopher J., Klein, Michael L., Percec, Virgil

Natural, including plant, and synthetic phenolic acids are employed as building blocks for the synthesis of constitutional isomeric libraries of self-assembling dendrons and dendrimers that are the simplest examples of programmed synthetic macromolecules. Amphiphilic Janus dendrimers are synthesized from a diversity of building blocks including natural phenolic acids. They self-assemble in water or buffer into vesicular dendrimersomes employed as biological membrane mimics, hybrid and synthetic cells. These dendrimersomes are predominantly uni- or multilamellar vesicles with size and polydispersity that is predicted by their primary structure. However, in numerous cases, unilamellar dendrimersomes completely free of multilamellar assemblies are desirable. Here, we report the synthesis and structural analysis of a library containing 13 amphiphilic Janus dendrimers containing linear and branched alkyl chains on their hydrophobic part. They were prepared by an optimized iterative modular synthesis starting from natural phenolic acids. Monodisperse dendrimersomes were prepared by injection and giant polydisperse by hydration. Both were structurally characterized to select the molecular design principles that provide unilamellar dendrimersomes in higher yields and shorter reaction times than under previously used reaction conditions. These dendrimersomes are expected to provide important tools for synthetic cell biology, encapsulation, and delivery.

Loading...
Thumbnail Image
Item

SET-LRP in biphasic mixtures of fluorinated alcohols with water

2018, Moreno, Adrian, Liu, Tong, Ding, Liang, Buzzacchera, Irene, Galià, Marina, Möller, Martin, Wilson, Christopher J., Lligadas, Gerard, Percec, Virgil

Biphasic-binary mixtures of 2,2,2-trifluoroethanol (TFE) or 2,2,3,3-tetrafluoropropanol (TFP) with water were used as reaction media to synthesize well-defined poly(methyl acrylate) (PMA) with chain end functionality close to 100% by SET-LRP. Non-activated Cu(0) wire was used as a catalyst, taking advantage of the Cu(0)-activation property that these fluorinated alcohols possess. Biphasic-binary mixtures of water, containing a ligand and Cu(II)Br2 either generated by disproportionation of Cu(I)Br or externally added, and an organic solvent, containing a monomer and a polymer, were studied. Two N-ligands were investigated: the classic tris(2-dimethylaminoethyl)amine (Me6-TREN) and tris(2-aminoethyl)amine (TREN), as a more economically attractive alternative for technological purposes. The results reported here support the replacement of Me6-TREN by TREN, taking into account the fact that the latter requires small loadings of an externally added Cu(II)Br2 deactivator and a ligand in the water phase to mediate a living radical polymerization process. Both catalytic systems ensure efficient SET-LRP processes with first order kinetics to high conversion, linear dependence of experimental Mn on conversion, narrow molecular weight distribution, and near-quantitative chain end functionality.

Loading...
Thumbnail Image
Item

Exploring functional pairing between surface glycoconjugates and human galectins using programmable glycodendrimersomes

2018, Xiao, Qi, Ludwig, Anna-Kristin, Romanò, Cecilia, Buzzacchera, Irene, Sherman, Samuel E., Vetro, Maria, Vértesy, Sabine, Kaltner, Herbert, Reed, Ellen H., Möller, Martin, Wilson, Christopher J., Hammer, Daniel A., Oscarson, Stefan, Klein, Michael L., Gabius, Hans-Joachim, Percec, Virgil

Precise translation of glycan-encoded information into cellular activity depends critically on highly specific functional pairing between glycans and their human lectin counter receptors. Sulfoglycolipids, such as sulfatides, are important glycolipid components of the biological membranes found in the nervous and immune systems. The optimal molecular and spatial design aspects of sulfated and nonsulfated glycans with high specificity for lectin-mediated bridging are unknown. To elucidate how different molecular and spatial aspects combine to ensure the high specificity of lectin-mediated bridging, a bottom-up toolbox is devised. To this end, negatively surface-charged glycodendrimersomes (GDSs), of different nanoscale dimensions, containing sulfo-lactose groups are self-assembled in buffer from a synthetic sulfatide mimic: Janus glycodendrimer (JGD) containing a 3′-O-sulfo-lactose headgroup. Also prepared for comparative analysis are GDSs with nonsulfated lactose, a common epitope of human membranes. These self-assembled GDSs are employed in aggregation assays with 15 galectins, comprising disease-related human galectins, and other natural and engineered variants from four families, having homodimeric, heterodimeric, and chimera architectures. There are pronounced differences in aggregation capacity between human homodimeric and heterodimeric galectins, and also with respect to their responsiveness to the charge of carbohydrate-derived ligand. Assays reveal strong differential impact of ligand surface charge and density, as well as lectin concentration and structure, on the extent of surface cross-linking. These findings demonstrate how synthetic JGD-headgroup tailoring teamed with protein engineering and network assays can help explain how molecular matchmaking operates in the cellular context of glycan and lectin complexity.