Search Results

Now showing 1 - 8 of 8
  • Item
    Modelling Ag-particle activation and growth in a TSI WCPC model 3785
    (München : European Geopyhsical Union, 2010) Stratmann, F.; Herrmann, E.; Petäjä, T.; Kulmala, M.
    In this work, we modelled activation and growth of silver particles in the water-operated TSI model 3785 water condensation particle counter (WCPC). Our objective was to investigate theoretically how various effects influence the counting efficiency of this CPC. Coupled fluid and particle dynamic processes were modelled with the computational fluid dynamics (CFD) code FLUENT in combination with the Fine Particle Model (FPM) to obtain profiles of temperature, vapour concentration, nucleation rate, and particle size. We found that the counting efficiency of the TSI 3785 for small particles might be affected by the presence of larger particles. Moreover, homogeneous nucleation processes can significantly influence counting efficiency.
  • Item
    Organic aerosol concentration and composition over Europe: Insights from comparison of regional model predictions with aerosol mass spectrometer factor analysis
    (München : European Geopyhsical Union, 2014) Fountoukis, C.; Megaritis, A.G.; Skyllakou, K.; Charalampidis, P.E.; Pilinis, C.; van der Gon, H.A.C. Denier; Crippa, M.; Canonaco, F.; Mohr, C.; Prévôt, A.S.H.; Allan, J.D.; Poulain, L.; Petäjä, T.; Tiitta, P.; Carbone, S.; Kiendler-Scharr, A.; Nemitz, E.; O'Dowd, C.; Swietlicki, E.; Pandis, S.N.
    A detailed three-dimensional regional chemical transport model (Particulate Matter Comprehensive Air Quality Model with Extensions, PMCAMx) was applied over Europe, focusing on the formation and chemical transformation of organic matter. Three periods representative of different seasons were simulated, corresponding to intensive field campaigns. An extensive set of AMS measurements was used to evaluate the model and, using factor-analysis results, gain more insight into the sources and transformations of organic aerosol (OA). Overall, the agreement between predictions and measurements for OA concentration is encouraging, with the model reproducing two-thirds of the data (daily average mass concentrations) within a factor of 2. Oxygenated OA (OOA) is predicted to contribute 93% to total OA during May, 87% during winter and 96% during autumn, with the rest consisting of fresh primary OA (POA). Predicted OOA concentrations compare well with the observed OOA values for all periods, with an average fractional error of 0.53 and a bias equal to −0.07 (mean error = 0.9 μg m−3, mean bias = −0.2 μg m−3). The model systematically underpredicts fresh POA at most sites during late spring and autumn (mean bias up to −0.8 μg m−3). Based on results from a source apportionment algorithm running in parallel with PMCAMx, most of the POA originates from biomass burning (fires and residential wood combustion), and therefore biomass burning OA is most likely underestimated in the emission inventory. The sensitivity of POA predictions to the corresponding emissions' volatility distribution is discussed. The model performs well at all sites when the Positive Matrix Factorization (PMF)-estimated low-volatility OOA is compared against the OA with saturation concentrations of the OA surrogate species C* ≤ 0.1 μg m−3 and semivolatile OOA against the OA with C* > 0.1 μg m−3.
  • Item
    Experimental investigation of ion-ion recombination under atmospheric conditions
    (München : European Geopyhsical Union, 2015) Franchin, A.; Ehrhart, S.; Leppä, J.; Nieminen, T.; Gagné, S.; Schobesberger, S.; Wimmer, D.; Duplissy, J.; Riccobono, F.; Dunne, E.M.; Rondo, L.; Downard, A.; Bianchi, F.; Kupc, A.; Tsagkogeorgas, G.; Lehtipalo, K.; Manninen, H.E.; Almeida, J.; Amorim, A.; Wagner, P.E.; Hansel, A.; Kirkby, J.; Le Rille, O.; Kürten, A.; Donahue, N.M.; Makhmutov, V.; Mathot, S.; Metzger, A.; Petäjä, T.; Schnitzhofer, R.; Sipilä, M.; Stozhkov, Y.; Tomé, A.; Kerminen, V.-M.; Carslaw, K.; Curtius, J.; Baltensperger, U.; Kulmala, M.
    We present the results of laboratory measurements of the ion–ion recombination coefficient at different temperatures, relative humidities and concentrations of ozone and sulfur dioxide. The experiments were carried out using the Cosmics Leaving OUtdoor Droplets (CLOUD) chamber at CERN, the walls of which are made of conductive material, making it possible to measure small ions. We produced ions in the chamber using a 3.5 GeV c−1 beam of positively charged pions (π+) generated by the CERN Proton Synchrotron (PS). When the PS was switched off, galactic cosmic rays were the only ionization source in the chamber. The range of the ion production rate varied from 2 to 100 cm−3 s−1, covering the typical range of ionization throughout the troposphere. The temperature ranged from −55 to 20 °C, the relative humidity (RH) from 0 to 70 %, the SO2 concentration from 0 to 40 ppb, and the ozone concentration from 200 to 700 ppb. The best agreement of the retrieved ion–ion recombination coefficient with the commonly used literature value of 1.6 × 10−6 cm3 s−1 was found at a temperature of 5 °C and a RH of 40 % (1.5 ± 0.6) × 10−6 cm3 s−1. At 20 °C and 40 % RH, the retrieved ion–ion recombination coefficient was instead (2.3 ± 0.7) × 10−6 cm3 s−1. We observed no dependency of the ion–ion recombination coefficient on ozone concentration and a weak variation with sulfur dioxide concentration. However, we observed a more than fourfold increase in the ion–ion recombination coefficient with decreasing temperature. We compared our results with three different models and found an overall agreement for temperatures above 0 °C, but a disagreement at lower temperatures. We observed a strong increase in the recombination coefficient for decreasing relative humidities, which has not been reported previously.
  • Item
    In situ formation and spatial variability of particle number concentration in a European megacity
    (München : European Geopyhsical Union, 2015) Pikridas, M.; Sciare, J.; Freutel, F.; Crumeyrolle, S.; von der Weiden-Reinmüller, S.-L.; Borbon, A.; Schwarzenboeck, A.; Merkel, M.; Crippa, M.; Kostenidou, E.; Psichoudaki, M.; Hildebrandt, L.; Engelhart, G.J.; Petäjä, T.; Prévôt, A.S.H.; Drewnick, F.; Baltensperger, U.; Wiedensohler, A.; Kulmala, M.; Beekmann, M.; Pandis, S.N.
    Ambient particle number size distributions were measured in Paris, France, during summer (1–31 July 2009) and winter (15 January to 15 February 2010) at three fixed ground sites and using two mobile laboratories and one airplane. The campaigns were part of the Megacities: Emissions, urban, regional and Global Atmospheric POLlution and climate effects, and Integrated tools for assessment and mitigation (MEGAPOLI) project. New particle formation (NPF) was observed only during summer on approximately 50 % of the campaign days, assisted by the low condensation sink (about 10.7 ± 5.9 × 10−3 s−1). NPF events inside the Paris plume were also observed at 600 m altitude onboard an aircraft simultaneously with regional events identified on the ground. Increased particle number concentrations were measured aloft also outside of the Paris plume at the same altitude, and were attributed to NPF. The Paris plume was identified, based on increased particle number and black carbon concentration, up to 200 km away from the Paris center during summer. The number concentration of particles with diameters exceeding 2.5 nm measured on the surface at the Paris center was on average 6.9 ± 8.7 × 104 and 12.1 ± 8.6 × 104 cm−3 during summer and winter, respectively, and was found to decrease exponentially with distance from Paris. However, further than 30 km from the city center, the particle number concentration at the surface was similar during both campaigns. During summer, one suburban site in the NE was not significantly affected by Paris emissions due to higher background number concentrations, while the particle number concentration at the second suburban site in the SW increased by a factor of 3 when it was downwind of Paris.
  • Item
    A synthesis of cloud condensation nuclei counter (CCNC) measurements within the EUCAARI network
    (München : European Geopyhsical Union, 2015) Paramonov, M.; Kerminen, V.-M.; Gysel, M.; Aalto, P.P.; Andreae, M.O.; Asmi, E.; Baltensperger, U.; Bougiatioti, A.; Brus, D.; Frank, G.P.; Good, N.; Gunthe, S.S.; Hao, L.; Irwin, M.; Jaatinen, A.; Jurányi, Z.; King, S.M.; Kortelainen, A.; Kristensson, A.; Lihavainen, H.; Kulmala, M.; Lohmann, U.; Martin, S.T.; McFiggans, G.; Mihalopoulos, N.; Nenes, A.; O'Dowd, C.D.; Ovadnevaite, J.; Petäjä, T.; Pöschl, U.; Roberts, G.C.; Rose, D.; Svenningsson, B.; Swietlicki, E.; Weingartner, E.; Whitehead, J.; Wiedensohler, A.; Wittbom, C.; Sierau, B.
    Cloud condensation nuclei counter (CCNC) measurements performed at 14 locations around the world within the European Integrated project on Aerosol Cloud Climate and Air Quality interactions (EUCAARI) framework have been analysed and discussed with respect to the cloud condensation nuclei (CCN) activation and hygroscopic properties of the atmospheric aerosol. The annual mean ratio of activated cloud condensation nuclei (NCCN) to the total number concentration of particles (NCN), known as the activated fraction A, shows a similar functional dependence on supersaturation S at many locations – exceptions to this being certain marine locations, a free troposphere site and background sites in south-west Germany and northern Finland. The use of total number concentration of particles above 50 and 100 nm diameter when calculating the activated fractions (A50 and A100, respectively) renders a much more stable dependence of A on S; A50 and A100 also reveal the effect of the size distribution on CCN activation. With respect to chemical composition, it was found that the hygroscopicity of aerosol particles as a function of size differs among locations. The hygroscopicity parameter κ decreased with an increasing size at a continental site in south-west Germany and fluctuated without any particular size dependence across the observed size range in the remote tropical North Atlantic and rural central Hungary. At all other locations κ increased with size. In fact, in Hyytiälä, Vavihill, Jungfraujoch and Pallas the difference in hygroscopicity between Aitken and accumulation mode aerosol was statistically significant at the 5 % significance level. In a boreal environment the assumption of a size-independent κ can lead to a potentially substantial overestimation of NCCN at S levels above 0.6 %. The same is true for other locations where κ was found to increase with size. While detailed information about aerosol hygroscopicity can significantly improve the prediction of NCCN, total aerosol number concentration and aerosol size distribution remain more important parameters. The seasonal and diurnal patterns of CCN activation and hygroscopic properties vary among three long-term locations, highlighting the spatial and temporal variability of potential aerosol–cloud interactions in various environments.
  • Item
    Variability of air ion concentrations in urban Paris
    (München : European Geopyhsical Union, 2015) Dos Santos, V.N.; Herrmann, E.; Manninen, H.E.; Hussein, T.; Hakala, J.; Nieminen, T.; Aalto, P.P.; Merkel, M.; Wiedensohler, A.; Kulmala, M.; Petäjä, T.; Hämeri, K.
    Air ion concentrations influence new particle formation and consequently the global aerosol as potential cloud condensation nuclei. We aimed to evaluate air ion concentrations and characteristics of new particle formation events (NPF) in the megacity of Paris, France, within the MEGAPOLI (Megacities: Emissions, urban, regional and Global Atmospheric Pollution and climate effects, and Integrated tools for assessment and mitigation) project. We measured air ion number size distributions (0.8–42 nm) with an air ion spectrometer and fine particle number concentrations (> 6 nm) with a twin differential mobility particle sizer in an urban site of Paris between 26 June 2009 and 4 October 2010. Air ions were size classified as small (0.8–2 nm), intermediate (2–7 nm), and large (7–20 nm). The median concentrations of small and large ions were 670 and 680 cm−3, respectively, (sum of positive and negative polarities), whereas the median concentration of intermediate ions was only 20 cm−3, as these ions were mostly present during new particle formation bursts, i.e. when gas-to-particle conversion produced fresh aerosol particles from gas phase precursors. During peaks in traffic-related particle number, the concentrations of small and intermediate ions decreased, whereas the concentrations of large ions increased. Seasonal variations affected the ion population differently, with respect to their size and polarity. NPF was observed in 13 % of the days, being most frequent in spring and late summer (April, May, July, and August). The results also suggest that NPF was favoured on the weekends in comparison to workdays, likely due to the lower levels of condensation sinks in the mornings of weekends (CS weekdays 09:00: 18 × 10−3 s−1; CS weekend 09:00: 8 × 10−3 s−1). The median growth rates (GR) of ions during the NPF events varied between 3 and 7 nm h−1, increasing with the ion size and being higher on workdays than on weekends for intermediate and large ions. The median GR of small ions on the other hand were rather similar on workdays and weekends. In general, NPF bursts changed the diurnal cycle of particle number as well as intermediate and large ions by causing an extra peak between 09:00 and 14:00. On average, during the NPF bursts the concentrations of intermediate ions were 8.5–10 times higher than on NPF non-event days, depending on the polarity, and the concentrations of large ions and particles were 1.5–1.8 and 1.2 times higher, respectively. Because the median concentrations of intermediate ions were considerably higher on NPF event days in comparison to NPF non-event days, the results indicate that intermediate ion concentrations could be used as an indication for NPF in Paris. The results suggest that NPF was a source of ions and aerosol particles in Paris and therefore contributed to both air quality degradation and climatic effects, especially in the spring and summer.
  • Item
    Enhancement of atmospheric H2SO4/H2O nucleation: Organic oxidation products versus amines
    (München : European Geopyhsical Union, 2014) Berndt, T.; Sipilä, M.; Stratmann, F.; Petäjä, T.; Vanhanen, J.; Mikkilä, J.; Patokoski, J.; Taipale, R.; Mauldin III, R.L.; Kulmala, M.
    Atmospheric H2SO4 / H2O nucleation influencing effects have been studied in the flow tube IfT-LFT (Institute for Tropospheric Research – Laminar Flow Tube) at 293 ± 0.5 K and a pressure of 1 bar using synthetic air as the carrier gas. The presence of a possible background amine concentration in the order of 107–108 molecule cm−3 throughout the experiments has to be taken into account. In a first set of investigations, ozonolysis of olefins (tetramethylethylene, 1-methyl-cyclohexene, α-pinene and limonene) for close to atmospheric concentrations, served as the source of OH radicals and possibly other oxidants initiating H2SO4 formation starting from SO2. The oxidant generation is inevitably associated with the formation of organic oxidation products arising from the parent olefins. These products (first generation mainly) showed no clear effect on the number of nucleated particles within a wide range of experimental conditions for H2SO4 concentrations higher than ~107 molecule cm−3. Also the early growth process of the nucleated particles was not significantly influenced by the organic oxidation products in line with the expected growth by organic products using literature data. An additional, H2SO4-independent process of particle (nano-CN) formation was observed in the case of α-pinene and limonene ozonolysis for H2SO4 concentrations smaller than ~107 molecule cm−3. Furthermore, the findings confirm the appearance of an additional oxidant for SO2 beside OH radicals, very likely stabilized Criegee Intermediates (sCI). A second set of experiments has been performed in the presence of added amines in the concentrations range of a few 107–1010 molecule cm−3 applying photolytic OH radical generation for H2SO4 production without addition of other organics. All amines showed significant nucleation enhancement with increasing efficiency in the order pyridine < aniline < dimethylamine < trimethylamine. This result supports the idea of H2SO4 cluster stabilization by amines due to strong H2SO4↔amine interactions. On the other hand, this study indicates that for organic oxidation products (in presence of the possible amine background as stated) a distinct H2SO4 / H2O nucleation enhancement can be due to increased H2SO4 formation caused by additional organic oxidant production (sCI) rather than by stabilization of H2SO4 clusters due to H2SO4↔organics interactions.
  • Item
    On the formation of sulphuric acid – Amine clusters in varying atmospheric conditions and its influence on atmospheric new particle formation
    (München : European Geopyhsical Union, 2012) Paasonen, P.; Olenius, T.; Kupiainen, O.; Kurtén, T.; Petäjä, T.; Birmili, W.; Hamed, A.; Hu, M.; Huey, L.G.; Plass-Duelmer, C.; Smith, J.N.; Wiedensohler, A.; Loukonen, V.; McGrath, M.J.; Ortega, I.K.; Laaksonen, A.; Vehkamäki, H.; Kerminen, V.-M.; Kulmala, M.
    Sulphuric acid is a key component in atmospheric new particle formation. However, sulphuric acid alone does not form stable enough clusters to initiate particle formation in atmospheric conditions. Strong bases, such as amines, have been suggested to stabilize sulphuric acid clusters and thus participate in particle formation. We modelled the formation rate of clusters with two sulphuric acid and two amine molecules (JA2B2) at varying atmospherically relevant conditions with respect to concentrations of sulphuric acid ([H2SO4]), dimethylamine ([DMA]) and trimethylamine ([TMA]), temperature and relative humidity (RH). We also tested how the model results change if we assume that the clusters with two sulphuric acid and two amine molecules would act as seeds for heterogeneous nucleation of organic vapours (other than amines) with higher atmospheric concentrations than sulphuric acid. The modelled formation rates JA2B2 were functions of sulphuric acid concentration with close to quadratic dependence, which is in good agreement with atmospheric observations of the connection between the particle formation rate and sulphuric acid concentration. The coefficients KA2B2 connecting the cluster formation rate and sulphuric acid concentrations as JA2B2=KA2B2[H2SO4]2 turned out to depend also on amine concentrations, temperature and relative humidity. We compared the modelled coefficients KA2B2 with the corresponding coefficients calculated from the atmospheric observations (Kobs) from environments with varying temperatures and levels of anthropogenic influence. By taking into account the modelled behaviour of JA2B2 as a function of [H2SO4], temperature and RH, the atmospheric particle formation rate was reproduced more closely than with the traditional semi-empirical formulae based on sulphuric acid concentration only. The formation rates of clusters with two sulphuric acid and two amine molecules with different amine compositions (DMA or TMA or one of both) had different responses to varying meteorological conditions and concentrations of vapours participating in particle formation. The observed inverse proportionality of the coefficient Kobs with RH and temperature agreed best with the modelled coefficient KA2B2 related to formation of a cluster with two H2SO4 and one or two TMA molecules, assuming that these clusters can grow in collisions with abundant organic vapour molecules. In case this assumption is valid, our results suggest that the formation rate of clusters with at least two of both sulphuric acid and amine molecules might be the rate-limiting step for atmospheric particle formation. More generally, our analysis elucidates the sensitivity of the atmospheric particle formation rate to meteorological variables and concentrations of vapours participating in particle formation (also other than H2SO4).