Search Results

Now showing 1 - 5 of 5
  • Item
    Solar 27-day signatures in standard phase height measurements above central Europe
    (Katlenburg-Lindau : EGU, 2019) von Savigny, Christian; Peters, Dieter H.W.; Entzian, Günter
    We report on the effect of solar variability at the 27-day and the 11-year timescales on standard phase heightmeasurements in the ionospheric D region carried out in cen-tral Europe. Standard phase height corresponds to the re-flection height of radio waves (for constant solar zenith dis-tance) in the ionosphere near 80 km altitude, where NO isionized by solar Lyman-αradiation. Using the superposedepoch analysis (SEA) method, we extract statistically highlysignificant solar 27-day signatures in standard phase heights.The 27-day signatures are roughly inversely correlated to so-lar proxies, such as the F10.7 cm radio flux or the Lyman-αflux. The sensitivity of standard phase height change to so-lar forcing at the 27-day timescale is found to be in goodagreement with the sensitivity for the 11-year solar cycle,suggesting similar underlying mechanisms. The amplitude ofthe 27-day signature in standard phase height is larger duringsolar minimum than during solar maximum, indicating thatthe signature is not only driven by photoionization of NO. Weidentified statistical evidence for an influence of ultra-longplanetary waves on the quasi 27-day signature of standardphase height in winters of solar minimum periods.
  • Item
    Middle- and High-Latitude Mesosphere and Lower Thermosphere Mean Winds and Tides in Response to Strong Polar-Night Jet Oscillations
    (Hoboken, NJ : Wiley, 2019) Conte, J. Federico; Chau, Jorge L.; Peters, Dieter H.W.
    The dynamical behavior of the mesosphere and lower thermosphere (MLT) region during strongly disturbed wintertime conditions commonly known as polar-night jet oscillations (PJOs) is described in detail and compared to other wintertime conditions. For this purpose, wind measurements provided by two specular meteor radars located at Andenes (69°N, 16°E) and Juliusruh (54°N, 13°E) are used to estimate horizontal mean winds and tides as an observational basis. Winds and tidal main features are analyzed and compared for three different cases: major sudden stratospheric warming (SSW) with (a) strong PJO event, (b) non-PJO event, and (c) no major SSWs. We show that the distinction into strong PJOs, non-PJOs, and winters with no major SSWs is better suited to identify differences in the behavior of the mean winds and tides during the boreal winter. To assess the impact of the stratospheric disturbed conditions on the MLT region, we investigate the 30-year nudged simulation by the Extended Canadian Middle Atmosphere Model. Analysis of geopotential height disturbances suggests that changes in the location of the polar vortex at mesospheric heights are responsible for the jets observed in the MLT mean winds during strong PJOs, which in turn influence the evolution of semidiurnal tides by increasing or decreasing their amplitudes depending on the tidal component. © 2019. The Authors.
  • Item
    On the upper tropospheric formation and occurrence of high and thin cirrus clouds during anticyclonic poleward Rossby wave breaking events
    (Milton Park : Taylor & Francis, 2010) Eixmann, Ronald; Peters, Dieter H.W.; Zülicke, Christoph; Gerding, Michael; Dörnbrack, Andreas
    Ground-based lidar measurements and balloon soundings were employed to examine the dynamical link between anticyclonic Rossby wave breaking and cirrus clouds from 13 to 15 February 2006. For this event, an air mass with low Ertel’s potential vorticity appeared over Central Europe. In the tropopause region, this air mass was accompanied with both an area of extreme cold temperatures placed northeastward, and an area of high specific humidity, located southwestward. ECMWF analyses reveal a strong adiabatic northeastward and upward transport of water vapour within the warm conveyor belt on the western side of the ridge over Mecklenburg, Northern Germany. The backscatter lidar at K¨uhlungsborn (54.1◦N, 11.8◦E) clearly identified cirrus clouds at between 9 and 11.4 km height. In the tropopause region high-vertical resolution radiosoundings showed layers of subsaturated water vapour over ice but with a relative humidity over ice >80%. Over Northern Germany radiosondes indicated anticyclonically rotating winds in agreement with backward trajectories of ECMWF analyses in the upper troposphere, which were accompanied by a relatively strong increase of the tropopause height on 14 February. Based on ECMWF data the strong link between the large-scale structure, updraft and ice water content was shown.
  • Item
    Influence of subtropical Rossby wave trains on planetary wave activity over Antarctica in September 2002
    (Stockholm : Stockholm University Press, 2015) Peters, Dieter H.W.; Vargin, Pavel
    At the beginning of September 2002, strong convection processes over south-eastern Indonesia and over south-eastern Africa have been observed. Due to the strong upper tropospheric divergent outflow, two Rossby wave trains (RWTs) were generated. Their south-eastward propagation was controlled by the mean background flow. These two wave trains are visible in observations. It is hypothesised that these wave trains cause enhanced planetary wave activity fluxes which are a result of an amplified planetary wave 2 in the upper troposphere/lower stratosphere over Antarctica. Such a change of the planetary wave structure was diagnosed in September 2002, prior to the first observed major sudden stratospheric warming event on the Southern Hemisphere. A simplified version of GCM ECHAM4 is used to evaluate the hypothesis. Sensitivity experiments were performed for a mean background flow similar to September 2002. Furthermore, the wave maker approach was used to generate Rossby waves in the subtropical upper troposphere at two distinct locations which are corresponding to the observed regions of divergent outflow. As a main result, after about 2 weeks of model integration with wave maker forcing, we find two RWTs with a south-eastward propagation inducing a polar amplification of planetary wave 2 in the upper troposphere and lower/middle stratosphere. The poleward wave activity flux is enhanced in comparison to the control run without any wave maker forcing. The convergence of the Eliassen–Palm flux causes a 25% deceleration of zonal mean zonal wind in the model stratosphere but no wind reversal. Sensitivity runs support the robustness of these results. The obtained model results highlight the mechanism and confirm the hypothesis that enhanced planetary wave activity in austral polar region in 2002 is caused by enhanced subtropical forcing of two RWTs.
  • Item
    Trägheitsschwerewellen und ihre Verbindung zu brechenden Rossbywellen : Schlussbericht
    (Hannover : Technische Informationsbibliothek (TIB), 2005) Peters, Dieter H.W.; Gerding, Michael; Hoffmann, Peter; Zülicke, Christoph; Serafimovich, Andrei
    [no abstract available]