Search Results

Now showing 1 - 2 of 2
  • Item
    Record Balkan floods of 2014 linked to planetary wave resonance
    (Washington, DC : American Association for the Advancement of Science, 2016) Stadtherr, Lisa; Coumou, Dim; Petoukhov, Vladimir; Petri, Stefan; Rahmstorf, Stefan
    In May 2014, the Balkans were hit by a Vb-type cyclone that brought disastrous flooding and severe damage to Bosnia and Herzegovina, Serbia, and Croatia. Vb cyclones migrate from the Mediterranean, where they absorb warm and moist air, to the north, often causing flooding in central/eastern Europe. Extreme rainfall events are increasing on a global scale, and both thermodynamic and dynamical mechanisms play a role. Where thermodynamic aspects are generally well understood, there is large uncertainty associated with current and future changes in dynamics. We study the climatic and meteorological factors that influenced the catastrophic flooding in the Balkans, where we focus on large-scale circulation. We show that the Vb cyclone was unusually stationary, bringing extreme rainfall for several consecutive days, and that this situation was likely linked to a quasi-stationary circumglobal Rossby wave train. We provide evidence that this quasi-stationary wave was amplified by wave resonance. Statistical analysis of daily spring rainfall over the Balkan region reveals significant upward trends over 1950–2014, especially in the high quantiles relevant for flooding events. These changes cannot be explained by simple thermodynamic arguments, and we thus argue that dynamical processes likely played a role in increasing flood risks over the Balkans.
  • Item
    Alberta wildfire 2016: Apt contribution from anomalous planetary wave dynamics
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2018) Petoukhov, Vladimir; Petri, Stefan; Kornhuber, Kai; Thonicke, Kirsten; Coumou, Dim; Schellnhuber, Hans Joachim
    In May-June 2016 the Canadian Province of Alberta suffered one of the most devastating wildfires in its history. Here we show that in mid-April to early May 2016 the large-scale circulation in the mid- and high troposphere of the middle and sub-polar latitudes of the northern hemisphere featured a persistent high-amplitude planetary wave structure dominated by the non-dimensional zonal wave number 4. The strongest anticyclonic wing of this structure was located over western Canada. In combination with a very strong El Niño event in winter 2015/2016 this favored highly anomalous, tinder-dry and high-temperature conditions at the surface in that area, entailing an increased fire hazard there. This critically contributed to the ignition of the Alberta Wildfire in May 2016, appearing to be the costliest disaster in Canadian history thus far.