Search Results

Now showing 1 - 2 of 2
  • Item
    CM2Mc-LPJmL v1.0: biophysical coupling of a process-based dynamic vegetation model with managed land to a general circulation model
    (Katlenburg-Lindau : Copernicus, 2021-7-1) Drüke, Markus; von Bloh, Werner; Petri, Stefan; Sakschewski, Boris; Schaphoff, Sibyll; Forkel, Matthias; Huiskamp, Willem; Feulner, Georg; Thonicke, Kirsten
    The terrestrial biosphere is exposed to land-use and climate change, which not only affects vegetation dynamics but also changes land–atmosphere feedbacks. Specifically, changes in land cover affect biophysical feedbacks of water and energy, thereby contributing to climate change. In this study, we couple the well-established and comprehensively validated dynamic global vegetation model LPJmL5 (Lund–Potsdam–Jena managed Land) to the coupled climate model CM2Mc, the latter of which is based on the atmosphere model AM2 and the ocean model MOM5 (Modular Ocean Model 5), and name it CM2Mc-LPJmL. In CM2Mc, we replace the simple land-surface model LaD (Land Dynamics; where vegetation is static and prescribed) with LPJmL5, and we fully couple the water and energy cycles using the Geophysical Fluid Dynamics Laboratory (GFDL) Flexible Modeling System (FMS). Several improvements to LPJmL5 were implemented to allow a fully functional biophysical coupling. These include a sub-daily cycle for calculating energy and water fluxes, conductance of the soil evaporation and plant interception, canopy-layer humidity, and the surface energy balance in order to calculate the surface and canopy-layer temperature within LPJmL5. Exchanging LaD with LPJmL5 and, therefore, switching from a static and prescribed vegetation to a dynamic vegetation allows us to model important biospheric processes, including fire, mortality, permafrost, hydrological cycling and the impacts of managed land (crop growth and irrigation). Our results show that CM2Mc-LPJmL has similar temperature and precipitation biases to the original CM2Mc model with LaD. The performance of LPJmL5 in the coupled system compared to Earth observation data and to LPJmL offline simulation results is within acceptable error margins. The historical global mean temperature evolution of our model setup is within the range of CMIP5 (Coupled Model Intercomparison Project Phase 5) models. The comparison of model runs with and without land-use change shows a partially warmer and drier climate state across the global land surface. CM2Mc-LPJmL opens new opportunities to investigate important biophysical vegetation–climate feedbacks with a state-of-the-art and process-based dynamic vegetation model.
  • Item
    Coupling framework (1.0) for the PISM (1.1.4) ice sheet model and the MOM5 (5.1.0) ocean model via the PICO ice shelf cavity model in an Antarctic domain
    (Katlenburg-Lindau : Copernicus, 2021) Kreuzer, Moritz; Reese, Ronja; Huiskamp, Willem Nicholas; Petri, Stefan; Albrecht, Torsten; Feulner, Georg; Winkelmann, Ricarda
    The past and future evolution of the Antarctic Ice Sheet is largely controlled by interactions between the ocean and floating ice shelves. To investigate these interactions, coupled ocean and ice sheet model configurations are required. Previous modelling studies have mostly relied on high-resolution configurations, limiting these studies to individual glaciers or regions over short timescales of decades to a few centuries. We present a framework to couple the dynamic ice sheet model PISM (Parallel Ice Sheet Model) with the global ocean general circulation model MOM5 (Modular Ocean Model) via the ice shelf cavity model PICO (Potsdam Ice-shelf Cavity mOdel). As ice shelf cavities are not resolved by MOM5 but are parameterized with the PICO box model, the framework allows the ice sheet and ocean components to be run at resolutions of 16 km and 3∘ respectively. This approach makes the coupled configuration a useful tool for the analysis of interactions between the Antarctic Ice Sheet and the global ocean over time spans of the order of centuries to millennia. In this study, we describe the technical implementation of this coupling framework: sub-shelf melting in the ice sheet component is calculated by PICO from modelled ocean temperatures and salinities at the depth of the continental shelf, and, vice versa, the resulting mass and energy fluxes from melting at the ice–ocean interface are transferred to the ocean component. Mass and energy fluxes are shown to be conserved to machine precision across the considered component domains. The implementation is computationally efficient as it introduces only minimal overhead. Furthermore, the coupled model is evaluated in a 4000 year simulation under constant present-day climate forcing and is found to be stable with respect to the ocean and ice sheet spin-up states. The framework deals with heterogeneous spatial grid geometries, varying grid resolutions, and timescales between the ice and ocean component in a generic way; thus, it can be adopted to a wide range of model set-ups.